PDF下载 分享
[1]白 晓,桑文翠,李丰山,等.武都万象洞方解石现代沉积体系δ18O值月变化特征[J].地球化学,2015,44(03):245-253.
 BAI Xiao,SANG Wen-cui,LI Feng-shan and ZHANG De-zhong*.Monthly isotopic variations of calcite deposition system in Wanxiang Cave, Wudu County, Gansu[J].Geochimica,2015,44(03):245-253.
点击复制

武都万象洞方解石现代沉积体系δ18O值月变化特征

参考文献/References:

[1] Henderson G M. Caving in to new chronologies[J]. Science, 2006, 313(5787): 620–622.
[2] Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345–2348.
[3] Wang Y J, Cheng H, Edwards R L, He Y, Kong X G, AnZ S, Wu J Y, Kelly M J, Dykoski C A, Li X D. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854–857.
[4] Wang Y, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182): 1090–1093.
[5] Yuan D X, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M L, Qing J M, Lin Y S, Wang Y J, Wu J Y, Dorale J A, An Z S, Cai Y J. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575–578.
[6] Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X G, Wang Y J, Zhang R, Wang X F. Ice age terminations[J]. Science, 2009, 326(5950): 248–252.
[7] Zhang P Z, Cheng H, Edwards R L, Chen F H, Wang Y J, Liu J, Tan M, Wang X F, Liu J H, An C L, Dai Z B, Zhou J, Zhang D Z, Jia J H, Jin L Y, Johnson K R. A test of climate, Sun, and culture relationships from an 1810-year Chinese cave record[J]. Science, 2008, 322(5903): 940–942.
[8] Li T Y, Shen C C, Li H C, Li J Y, Chiang H W, Song S R, Yuan D X, Lin C D-J, Gao P, Zhou L P, Wang J L, Ye Y Y, Tang L L, Xie S Y. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China[J]. Geochim Cosmochim Acta, 2011, 75(15): 4140– 4156.
[9] LeGrande A N, Schmidt G A. Sources of Holocene variability of oxygen isotopes in paleoclimate archives[J]. Clim Past, 2009, 5: 441–455.
[10] Clemens S C, Prell W L, Sun Y. Orbital-scale timing and mechanisms driving Late Pleistocene Ind-Asian summer monsoons: Reinterpreting cave speleothem δ18O[J]. Paleoceanography, 2010, 25(4), PA4207, doi:10.1029/2010PA001926.
[11] Dayem K E, Molnar P, Battisti D S, Roe G H. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia[J]. Earth Planet Sc Lett, 2010, 295(1/2): 219–230.
[12] Pausata F S R, Battisti D S, Nisancioglu K H, Bitz C M. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nat Geosci, 2011, 4(7): 474–480.
[13] Maher B A, Thompson R. Oxygen isotopes from Chinese caves: Records not of monsoon rainfall but of circulation regime[J]. J Quatern Sci, 2012, 27(6): 615–624.
[14] Wang H, Chen H. Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon?[J]. J Geophys Res, 2012, 117, D12109, doi:10.1029/2012JD017734
[15] Hu C Y, Henderson G M, Huang J H. Report of a three-year monitoring programme at Heshang Cave, Central China[J]. Int J Speleol, 2008, 37(3): 143–151.
[16] 王新中, 班凤梅, 潘根兴. 洞穴滴水地球化学的空间和时间变化及其控制因素——以北京石花洞为例[J]. 第四纪研究, 2005, 25(2): 258–264.
Wang Xin-zhong, Ban Feng-mei, Pan Gen-xing. Temporal and spatial variation of cave dripwater geochemistry in Shihua Cave, Beijing, China[J]. Quatern Res, 2005, 3(2): 258–264 (in Chinese with English abstract).
[17] Cai B G, Zhu J, Ban F M, Tan M. Intra-annual variation of the calcite deposition rate of drip water in Shihua Cave, Beijing China and its implications for palaeoclimate reconstructions [J]. Boreas, 2011, 40(3): 525–535.
[18] Cai B G, Shen L M, Zheng W, Li K P, Bai Y Z, Dong C Z. Spatial distribution and diurnal variation in CO2 concentration, temperature and relative humidity of the cave air A case study from Water Cave, Benxi, Liaoning, China[J]. Carsol Sinica, 2009, 28(4): 348–354.
[19] Duan W H, Cai B G, Tan M, Liu H, Zhang Y. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring[J]. Boreas, 2012, 41(1): 113–123.
[20] 李廷勇, 李红春, 李俊云, 袁道先, 唐亮亮, 沈川洲, 叶成礼. 重庆芙蓉洞洞穴沉积物δ13C, δ18O特征及其意义[J]. 地质论评, 2008, 54(5): 712–720.
Li Ting-yong, Li Hong-chun, Li Jun-yun, Yuan Dao-xian, Tang Liang-liang, Shen Chuan-zhou, Ye Cheng-li. The δ13C and δ18O features and their significances of speleothems in Furong Cave, Chongqing, China[J]. Geol Rev, 2008, 54(5): 712–720 (in Chinese with English abstract).
[21] Li T Y, Li H C, Xiang X J, Kuo T-S, Li J Y, Zhou F L, Chen H L, Peng L L. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area[J]. Sci China Earth Sci, 2012, 55(4): 685–694.
[22] 周运超, 王世杰. 贵州凉风洞洞穴滴水水文水化学过程分析[J]. 第四纪研究, 2005, 25(2): 208–215.
Zhou Yun-chao, Wang Shi-jie. Analysis of hydrochemical process of dripwater in the Liangfeng Cave, Libo, Guizhou[J]. Quatern Res, 2005, 25(2): 208–215 (in Chinese with English abstract).
[23] 罗维均, 王世杰. 贵州凉风洞大气降水-土壤水-滴水的δ18O信号传递及其意义[J]. 科学通报, 2008, 53(17): 2071–2076.
Luo Weijun, Wang Shijie. Precipitation-soil water-dripping δ18O signal transmission and its significance in the Liangfeng Cave, Guizhou[J]. Chinese Sci Bull, 2008, 53(17): 2071–2076 (in Chinese).
[24] 张美良, 朱晓燕, 林玉石, 陈坤琨, 彭稳, 邹丽霞. 桂林盘龙洞滴水的物理化学指标变化研究及其意义[J]. 地球与环境, 2009, 37(1): 1–10.
Zhang Mei-liang, Zhu Xiao-yan, Lin Yu-shi, Chen Kun-kun, Peng Wen, Zou Li-xia. Study on the variation of physical-chemical properties of dripping water in the Panlong Cave in Guilin and its significance[J]. Earth Environ, 2009, 37(1): 1–10 (in Chinese with English abstract).
[25] 张伟, 段武辉, 吴江滢, 谭明. 南京葫芦洞缺失现代沉积的一个重要原因: 盐效应? ——与同一气候条件下安徽蓬莱仙洞的对比观测研究[J]. 第四纪研究, 2012, 32(2): 361–368.
Zhang Wei, Duan Wu-hui, Wu Jiang-ying, Tan Ming. One of the important causes of active speleothem in Nanjing Hulu Cave: Salting-in effect? — A comparative study with Penglaixian Cave, Anhui under the same climate conditions[J]. Quatern Res, 2012, 32(2): 361–368 (in Chinese with English abstract).
[26] 桑文翠, 张德忠, 王晓锋, 白益军, 张平中, 吴秀平. 甘肃武都万象洞方解石现代沉积控制因素分析[J]. 第四纪研究, 2013, 33(5): 936–944.
Sang Wen-cui, Zhang De-zhong, Wang Xiao-feng, Bai Yi-jun, Zhang Ping-zhong, Wu Xiu-ping. Analysis of modern calcite deposition controlling factors in Wanxiang Cave from Wudu, Gansu[J]. Quatern Res, 2013, 33(5): 936–944 (in Chinese with English abstract).
[27] 张平中, 陈一萌, Kathleen R. Johnson, 陈发虎, Lynn Ingram, 张欣利, 张成君, 王苏民, 庞福顺, 龙路德. 甘肃武都万象洞滴水与现代石笋同位素的环境意义[J]. 科学通报, 2004, 49(15): 1529–1531.
Zhang Pingzhong, Chen Yimeng, Kathleen R. Johnson, Chen Fahu, Lynn Ingram, Zhang Xinli, Zhang Chengjun, Wang Sumin, Pang Fushun, Long Lude. Environmental significance Wudu Wanxiang Cave dripping with modern stalagmite isotope[J]. Chinese Sci Bull, 2004, 49(15): 1529–1531 (in Chinese).
[28] 刘伟, 王世杰, 罗维均. 贵州荔波岩溶峰丛区表层岩溶泉对大气降雨的响应及其指示意义[J]. 地球化学, 2011, 40(5): 487–496.
Liu Wei, Wang Shi-jie, Luo Wei-jun. The response of epikarst spring to precipitation and its implications in karst peak-cluster region of Libo Country, Guizhou Province, China[J]. Geochimica, 2011, 40(5): 487–496 (in Chinese with English abstract).
[29] 罗维均, 王世杰, 刘秀明. 洞穴现代沉积物δ13C值的生物量效应及机理探讨:以贵州4个洞穴为例[J]. 地球化学, 2007, 36(4): 344–350.
Luo Wei-jun, Wang Shi-jie, Liu Xiu-ming. Biomass effect on carbon isotope ratios of modern calcite deposition and its mechanism: A case study of 4 caves in Guizhou Province, China[J]. Geochimica, 2007, 36(4): 344–350 (in Chinese with English abstract).
[30] 贾蓉芬, 蔡炳贵, 班凤梅, 刘德汉. 北京石花洞石笋中有机质的赋存状态[J]. 地球化学, 2007, 36(2): 193–199.
Jia Rong-fen, Cai Bing-gui, Ban Feng-mei, Liu De-han. Occurrence of organic matter in stalagmite from Shihua cave, Beijing[J]. Geochimica, 2007, 36(2): 193–199 (in Chinese with English abstract).
[31] 洪阿实, 彭子成, 李平, 陈承惠, 许志峰, 王明亮. 福建宁化天鹅洞石笋晚第四纪同位素古温度研究[J]. 地球化学, 1995, 24(2): 138–145.
Hong A-shi, Peng Zi-cheng, Li Ping, Chen Cheng-hui, Xu Zhi-feng, Wang Ming-liang. A study of late Quaternary isotopic paleotemperature of stalagmite from Tian’e Cave at Ninghua Country, Fujian[J]. Geochimica, 1995, 24(2): 138–145 (in Chinese with English abstract).
[32] Sundqvist H S, Seibert J, Holmgren K. Understanding conditions behind speleothem formation in Korallgrottan, northwestern Sweden[J]. J Hydrol, 2007, 347(1/2): 13–22.
[33] Riechelmann D F C, Schr?der-Ritzrau A, Scholz D, Fohlmeister J, Sp?tl C, Richter D K, Mangini A. Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site[J]. J Hydrol, 2011, 409(3/4): 682–695.
[34] Feng W, Banner J, Guilfoyle A, Musgrove M. James EW. Oxygen isotopic fractionation between drip water and speleothem calcite: A 10-year monitoring study, central Texas, USA[J]. Chem Geol, 2012, 304–305: 53–67.
[35] Feng W, Casteel R C, Banner J L, Heinze-Fry A. Oxygen isotope variations in rainfall, drip-waterand speleothem calcite from a well-ventilated cave in Texas, USA: Assessing a new speleothem temperature proxy[J]. Geochim Cosmochim Acta, 2014, 127: 233–250.
[36] Fuller L, Baker A, Fairchild I J, C. Sp?tl C, Marca-Bell A, Rowe P, Dennis P F. Isotope hydrology of dripwaters in a Scottish cave and implications for stalagmite palaeoclimate research[J]. Hydrol Earth Syst Sci, 2008, 12(2): 1065–1074.
[37] 程海, 艾思本, 王先锋, 汪永进, 孔兴功, 袁道先, 张美良, 林玉石, 覃嘉铭, 冉景丞. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, 2005, 25(2): 157–163.
Cheng Hai, Edwards R L, Wang Xian-feng, Wang Yong-jin, Kong Xing-gong, Yuan Dao-xian, Zhang Mei-liang, Lin Yu-shi, Qin Jia-ming, Ran Jing-cheng. Oxygen isotope records of stalagmites from southern China[J]. Quatern Res, 2005, 25(2): 157–163 (in Chinese with English abstract).
[38] 谭明, 南素兰. 中国季风区降水氧同位素年际变化的“环流效应”初探[J]. 第四纪研究, 2010, 30(3): 620–622.
Tan Ming, Nan Su-lan. Primary investigation on interannual changes in the circulation effete of precipitation oxygen isotopes in Monsoon China[J]. Quatern Res, 2010, 30(3): 620–622 (in Chinese with English abstract).
[39] 谭明. 信风驱动的中国季风区石笋δ18O与大尺度温度场负耦合——从年代际变率到岁差周期的环流效应[J]. 第四纪研究, 2011, 31(6): 1086–1097.
Tan Ming. Trade-wind driven inverse coupling between stalagmite δ18O from monsoon region of China and large scale temperature—Circulation effect on decadal to precessional timescales[J]. Quatern Res, 2011, 31(6): 1086–1097 (in Chinese with English abstract).
[40] Lachniet M S. Climatic and environmental controls on speleothem oxygen-isotope values[J]. Quatern Sci Rev, 2009, 28: 412–432.
[41] 张德忠, 张平中, 桑文翠, 程海, 吴秀平, 袁野, 白益军, 王江林, 贾继红. 石笋密度蕴含的过去气候变化信息: 以末次冰消期黄土高原西部武都万象洞石笋为例[J]. 科学通报, 2010, 55(31): 3040–3047.
Zhang Dezhong, Zhang Pingzhong, Sang Wencui, Cheng Hai, Wu Xiuping, Yuan Ye, Bai Yijun, Wang Jianglin, Jia Jihong. Implications of stalagmite density for past climate change: An example from stalagmite growth during the last deglaciation from Wanxiang Cave, western Loess Plateau[J]. Chinese Sci Bull, 2010, 55(31): 3040–3047 (in Chinese).
[42] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702–1703.
[43] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13): 801–806.
Zheng Shuhui, Hou Fagao, Ni Baoling. Hydrogen and oxygen stable isotope studies of atmospheric precipitation[J]. Chinese Sci Bull, 1983, 28(13): 801–806 (in Chinese).
[44] Gat J R. Oxygen and Hydrogen isotopes in the hydrologic cycle[J]. Annu Rev Earth Pl Sc, 1996, 24: 225–262.
[45] Epstein S, Mayeda T. Variation of δ18O content of waters from natural sources[J]. Geochim Cosmochim Acta, 1953, 4(5): 213–224.
[46] Kim S T, O’Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochim Cosmochim Acta, 1997, 61(16): 3461–3475.
[47] Coplen T B, Kendall C, Hopple J. Comparison of stable isotope reference samples[J]. Nature, 1983, 302(5905): 236–238.
[48] O’Neil J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates[J]. J Chem Phys, 1969, 51(12): 5547–5558.
[49] Schwarcz H P, Ford Derek C, Harmon R S, Thompson P. Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance[J]. Geochim Cosmochim Acta, 1976, 40(6): 657–66.

相似文献/References:

[1]朱小龙,罗维均,王世杰*.贵州凉风洞洞穴系统锶同位素特征[J].地球化学,2018,47(02):209.
 ZHU Xiao-long,LUO Wei-jun and WANG Shi-jie*.The characteristics of 87Sr/86Sr in the Liangfeng Cave system, Guizhou, China[J].Geochimica,2018,47(03):209.
[2]白莉,王中良.西安城市工业区和咸阳郊区大气降水S同位素地球化学[J].地球化学,2009,38(03):273.
 BAI Li,WANG Zhong-liang.Sulfur isotope geochemistry of atmospheric precipitation in Xi'an and Xianyang, Shaanxi Province, China[J].Geochimica,2009,38(03):273.
[3]于津生,张鸿斌,虞福基,等.西藏东部大气降水氧同位素组成特征[J].地球化学,1980,09(02):113.
[4]卫克勤,王志祥,林瑞芬.宁夏冰块的水同位素组成[J].地球化学,1981,10(01):104.
[5]于津生,虞福基,刘德平.中国东部大气降水氢、氧同位素组成[J].地球化学,1987,16(01):22.
[6]张理刚.华南钨矿床黑钨矿的氧同位素研究[J].地球化学,1987,16(03):233.

备注/Memo

收稿日期(Received): 2014-11-01; 改回日期(Revised): 2014-12-20; 接受日期(Accepted): 2015-02-13
基金项目: 教育部高等学校博士学科点专项科研基金(20120211120024); 国家自然科学基金(41201197); 中央高校基本科研业务费专项基金(lzujbky-2014-211)
作者简介: 白晓(1993–), 男, 硕士研究生, 自然地理学专业。E-mail: baix2010@lzu.edu.cn
* 通讯作者(Corresponding author): ZHANG De-zhong, E-mail: zhangdzh@lzu.edu.cn; Tel: +86-931-8911843

更新日期/Last Update: 2015-05-30