PDF下载 分享
[1]聂小松,夏小平*,张 乐,等.碎屑电气石的LA-MC-ICPMS硼同位素原位微区分析及其源区示踪: 以哀牢山构造带为例[J].地球化学,2015,44(05):438-449.
 NIE Xiao-song,XIA Xiao-ping*,ZHANG Le,et al.In-situ boron isotopic analyses of tourmalines by LA-MC-ICPMS and its application to provenance analyses: A case study for the Ailaoshan Belt[J].Geochimica,2015,44(05):438-449.
点击复制

碎屑电气石的LA-MC-ICPMS硼同位素原位微区分析及其源区示踪: 以哀牢山构造带为例

参考文献/References:

[1] Palmer M R, Swihart G H. Boron isotope geochemistry: An overview[J]. Rev Mineral, 1996, 33(1): 709–744.
[2] Jiang S Y, Palmer M R. Boron isotope systematics of tourmaline from granites and pegmatites: A synthesis[J]. Eur J Mineral, 1998, 10(6): 1253–1265.
[3] Barth S. Boron isotope variations in nature: A synthesis[J]. Geol Rundsch, 1993, 82(4): 640–651.
[4] Marschall H R, Jiang S Y. Tourmaline isotopes: No element left behind[J]. Elements, 2011, 7(5): 313–319.
[5] 蒋少涌. 硼同位素及其地质应用研究[J]. 高校地质学报, 2000, 6(1): 1–16.
Jiang Shao-yong. Boron isotope and its geological applications[J]. Geol J China Univ, 2000, 6(1): 1–16 (in Chinese with English abstract).
[6] Eppich G R, Singleton M J, Wimpenny J B, Yin Q Z, Bradley K E. California GAMA Special Study: Stable isotopic composition of boron in groundwater-San Diego County Domestic Well Data[R]. Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2012.
[7] Wei G J, McCulloch M T, Mortimer G, Deng W F, Xie L H. Evidence for ocean acidification in the Great Barrier Reef of Australia[J]. Geochim Cosmochim Acta, 2009, 73(8): 2332–2346.
[8] Wei H Z, Jiang S Y, Tan H B, Zhang W J, Li B K, Yang T L. Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: Boron budget and sources[J]. Chem Geol, 2014, 380: 74–83.
[9] Yuan J, Guo Q, Wang Y. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China[J]. J Geochem Explor, 2014, 140: 11–22.
[10] Bast R, Scherer E E, Mezger K, Austrheim H, Ludwig T, Marschall H R, Putnis A, L?wen K. Boron isotopes in tourmaline as a tracer of metasomatic processes in the Bamble sector of Southern Norway[J]. Contrib Mineral Petrol, 2014, 168(4): 1–21.
[11] Genske F S, Turner S P, Beier C, Beier C, Chu Mei-Fei, Tonarini S, Pearson N J, Haase K M. Lithium and boron isotope systematics in lavas fromthe Azores islands reveal crustal assimilation[J]. Chem Geol, 2014, 373: 27–36.
[12] Jones R E, de Hoog J C M, Kirstein L A, Kasemann S A, Hinton R, Elliott T, Litvak V D, EIMF. Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics[J]. Earth Planet Sci Lett, 2014, 408: 390–401.
[13] Yang S Y, Jiang S Y. Chemical and boron isotopic omposition of tourmaline in the Xiangshan volcanic-intrusive complex, Southeast China: Evidence for boron mobilization and infiltration during magmatic-hydrothermal processes[J]. Chem Geol, 2012, 312: 177–189.
[14] Hu Guyue, Li Yanhe, Fan Changfu, Hou Kejun, Zhao Yue, Zeng Lingsen. In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province, northeastern China[J]. Ore Geol Rev, 2015, 65: 1127–1141.
[15] Slack J F, Trumbull R B. Tourmaline as a recorder of ore-forming processes[J]. Elements, 2011, 7(5): 321–326.
[16] Swihart G H, Carpenter S B, Xiao Yun, McBay E H, Smith D H, Xiao Yingkai. A boron isotope study of the Furnace Creek, California, borate district[J]. Econ Geol, 2014, 109(3): 567–580.
[17] Wang F L, Wang C Y, Zhao T P. Boron isotopic constraints on the Nb and Ta mineralization of the syenitic dikes in the ~260 Ma Emeishan large igneous province (SW China)[J]. Ore Geol Rev, 2015, 65: 1110–1126.
[18] Yan X, Chen B. Chemical and boron isotopic compositions of tourmaline from the Paleoproterozoic Houxianyu borate deposit, NE China: Implications for the origin of borate deposit[J]. J Asian Earth Sci, 2014, 94: 252–266.
[19] MacGregor J R, Grew E S, de Hoog J C M, Harley S L, Kowalski P M, Yates M G, Carson C J. Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: Evidence for a non-marine evaporite source[J]. Geochim Cosmochim Acta, 2013, 123: 261–283.
[20] Tan Hongbing, Ma Haizhou, Li Binkai, Zhang Xiying, Xiao Yingkai. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos[J]. Chinese Sci Bull, 2010, 55(27/28): 3181–3188.
[21] Zhang X, Ma H, Ma Y, Tang Q, Yuan X. Origin of the late Cretaceous potash-bearing evaporites in the Vientiane Basin of Laos: δ11B evidence from borates[J]. J Asian Earth Sci, 2013, 62: 812–818.
[22] Kasemann S A, Schmidt D N, Bijma J, Foster G L. In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH[J]. Chem Geol, 2009, 260(1): 138–147.
[23] Liu Y, Liu W, Peng Z, Xiao Y K, Wei G J, Sun W D, He JF, Liu G J, Chou C L. Instability of seawater pH in the South China Sea during the mid-late Holocene: Evidence from boron isotopic composition of corals[J]. Geochim Cosmochim Acta, 2009, 73(5): 1264–1272.
[24] Wei H Z, Lei F, Jiang S Y, Lu H Y, Xiao Y K, Zhang H Z, Sun X F. Implication of boron isotope geochemistry for the pedogenic environments in loess and paleosol sequences of central China[J]. Quatern Res, 2015, 83(1): 243–255.
[25] Pagani M, Lemarchand D, Spivack A, Gaillardet J. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates[J]. Geochim Cosmochim Acta, 2005, 69(4): 953–961.
[26] Tonarini S, Pennisi M, Adorni-Braccesi A, Dini A, Ferrara G, Gonfiantini R, Wiedenbeck M, Gr?ning M. Intercomparison of boron isotope and concentration measurements. Part I: Selection, preparation and homogeneity tests of the intercomparison materials[J]. Geostand Newslett, 2003, 27(1): 21–39.
[27] Gonfiantini R, Tonarini S, Gr?ning M, Adorni-Braccesi A, Al-Ammar A S, Astner M, B?chler S, Barnes R M, Bassett R L, Cocherie A. Intercomparison of boron isotope and concentration measurements. Part II: Evaluation of results[J]. Geostand Newslett, 2003, 27(1): 41–57.
[28] Chaussidon M, Robert F, Mangin D, Hanon P, Rose E F. Analytical procedures for the measurement of boron isotope compositions by ion microprobe in meteorites and mantle rocks[J]. Geostand Newslett, 1997, 21(1): 7–17.
[29] Fietzke J, Heinemann A, Taubner I, B?hm F, Erez J, Eisenhauer A. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material[J]. J Anal Atom Spectrom, 2010, 25(12): 1953–1957.
[30] Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E. Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: Evidence for recycled components in the Hawaiian plume[J]. Chem Geol, 2004, 212(1): 143–161.
[31] Le Roux P, Shirey S, Benton L, Hauri E, Mock T. In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (δ11B) at the nanogram level[J]. Chem Geol, 2004, 203(1): 123–138.
[32] 侯可军, 李延河, 肖应凯, 刘峰, 田有荣. LA-MC-ICP-MS 硼同位素微区原位测试技术[J]. 科学通报, 2010, 55(22): 2207–2213.
Hou Kejun, Li Yanhe, Xiao Yingkai, Liu Feng, Tian Yourong. LA-MC-ICP-MS in-situ boron isotope measure technique[J]. Chinese Sci Bull, 2010, 55(22): 2207–2213 (in Chinese).
[33] van Hinsberg V J, Henry D J, Dutrow B L. Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past[J]. Elements, 2011, 7(5): 327–332.
[34] Henry D J, Dutrow B L. Metamorphic tourmaline and its petrologic applications[J]. Rev Mineral, 1996, 33(1): 503–557.
[35] Henry D J, Guidotti C V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine[J]. Am Mineral, 1985, 70(1/2): 1–15.
[36] Morton A C, Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sediment Geol, 1999, 124(1): 3–29.
[37] Morton A C, Whitham A G, Fanning C M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data[J]. Sediment Geol, 2005, 182(1): 3–28.
[38] Salata D. Detrital tourmaline as an indicator of source rock lithology: An example from the Ropianka and Menilite formations (Skole Nappe, Polish Flysch Carpathians)[J]. Geol Q, 2013, 58(1): 19–30.
[39] Morton A C, Meinhold G, Howard J P, Phillips R J, Strogen D, Abutarruma Y, Elgadry M, Thusu B, Whitham A G. A heavy mineral study of sandstones from the eastern Murzuq Basin, Libya: Constraints on provenance and stratigraphic correlation[J]. J Afr Earth Sci, 2011, 61(4): 308–330.
[40] Jiang S Y, Radvanec M, Nakamura E, Palmer M, Kobayashi K, Zhao H X, Zhao K D. Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic and metamorphic fluid evolution[J]. Lithos, 2008, 106(1): 1–11.
[41] 郭海锋, 夏小平, 韦刚健, 王强, 赵振华, 黄小龙, 张海祥, 袁超, 李武显. 湘南上堡花岗岩中电气石 LA-MC-ICPMS 原位微区硼同位素分析及地质意义[J]. 地球化学, 2014, 43(1): 11–19.
Guo Hai-feng, Xia Xiao-ping, Wei Gang-jian, Wang Qiang, Zhao Zhen-hua, Huang Xiao-long, Zhang Hai-xiang, Yuan Chao, Li Wu-xian. LA-MC-ICPMS in situ boron isotopic analyses of tourmalines from the turmaline-bearing granites in the Shangbao area (southern Hunan Province) and its geological significance[J]. Geochimica, 2014, 43(1): 11–19 (in Chinese with English abstract).
[42] 钟大赉. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998: 1–231.
Zhong Da-lai. Paleotethyan Orogeny in the Western Yunnan and Sichuan[M]. Beijing: Science Press, 1998: 1–231 (in Chinese with English abstract).
[43] 刘俊来, 唐渊, 宋志杰, 翟云峰, 吴文彬, 陈文. 滇西哀牢山构造带: 结构与演化[J]. 吉林大学学报: 地球科学版, 2011, 41(5): 1285–1303.
Liu Jun-lai, Tang Yuan, Song Zhi-jie, Zhai Yun-feng, Wu Wen-bin, Chen Wen. The Ailaoshan belt in western Yunnan: Tectonic framework and tectonic evolution[J]. J Jilin Univ (Earth Sci), 2011, 41(5): 1285–1303 (in Chinese with English abstract).
[44] 董云鹏, 朱炳泉. 哀牢山缝合带中两类火山岩地球化学特征及其构造意义[J]. 地球化学, 2000, 29(1): 6–13.
Dong Yun-peng, Zhu Bing-quan. Geochemistry of the two-type volcanic rocks from Ailaoshan suture zone and their tectonic implication[J]. Geochimica, 2000, 29(1): 6–13 (in Chinese with English abstract).
[45] Tapponnier P, Lacassin R, Leloup P H, Sch?rer U, Zhong Dalai, Wu Haiwei, Liu Xiaohan, Ji Shaocheng, Zhang Lianshang, Zhong Jiayou. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China[J]. Nature, 1990, 343(6257): 431–437.
[46] Cai Yongfeng, Wang Yuejun, Cawood P A, Fang Weiming, Liu Huichuan, Xing Xiaowan, Zhang Yuzhi. Neoproterozoic subduction along the Ailaoshan zone, South China: Geochronological and geochemical evidence from amphibolite[J]. Precamb Res, 2014, 245: 13–28.
[47] Liu F, Wang F, Liu P, Liu, C. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau[J]. Gondwana Res, 2013, 24(1): 429–450.
[48] 云南省地质矿产局. 云南省区域地质志[M]. 北京: 地质出版社, 1990: 21.
Bureau of Geology and Mineral Resources of Yunnan Province. Regional Geology of Yunnan Province[M]. Beijing: Geological Publishing House, 1990: 21 (in Chinese).
[49] Wang Q F, Deng J, Li C S, Li G J, Yu L, Qiao L. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons[J]. Gondwana Res, 2013, 26(2): 438–448.
[50] Ludwig K R. Isoplot 3.0 — A geochronological toolkit for Microsoft Excel[R]. Berkeley Geochronology Center Special Publication, 2003.
[51] Kasemann S, Erzinger J, Franz G. Boron recycling in the continental crust of the central Andes from the Palaeozoic to Mesozoic, NW Argentina[J]. Contrib Mineral Petrol, 2000, 140(3): 328–343.
[52] Talikka M, Vuori S. Geochemical and boron isotopic compositions of tourmalines from selected gold-mineralized and barren rocks in SW Finland[J]. Bull Geol Soc Finland, 2010, 82(2): 113–128.
[53] Zhao K D, Jiang S Y, Nakamura E, Moriguti T, Palmer M R, Yang S Y, Dai B Z, Jiang Y H. Fluid-rock interaction in the Qitianling granite and associated tin deposits, South China: Evidence from boron and oxygen isotopes[J]. Ore Geol Rev, 2011, 43(1): 243–248.
[54] Jiang S Y. Boron isotope geochemistry of hydrothermal ore deposits in China: A preliminary study[J]. Phys Chem Earth Solid Earth Geodes, 2001, 26(9): 851–858.
[55] Trumbull R B, Chaussidon M. Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland[J]. Chem Geol, 1999, 153(1): 125–137.
[56] Slack J F, Palmer M R, Stevens B P J. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits[J]. Nature, 342(6252): 913–916.
[57] Palmer M R, Slack J F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites[J]. Contrib Mineral Petrol, 1989, 103(4): 434–451.
[58] Altherr R, Topuz G, Marschall H, Zack T, Ludwig T. Evolution of a tourmaline-bearing lawsonite eclogite from the Elekda? area (Central Pontides, N Turkey): Evidence for infiltration of slab-derived B-rich fluids during exhumation[J]. Contrib Mineral Petrol, 2004, 148(4): 409–425.
[59] Peacock S M, Hervig R L. Boron isotopic composition of subduction-zone metamorphic rocks[J]. Chem Geol, 1999, 160(4): 281–290.
[60] Scambelluri M, Tonarini S. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle[J]. Geology, 2012, 40(10): 907–910.
[61] Pal D C, Trumbull R B, Wiedenbeck M. Chemical and boron isotope compositions of tourmaline from the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, India: Implications for the sources and evolution of mineralizing fluids[J]. Chem Geol, 2010, 277(3): 245–260.
[62] Burrett C, Zaw K, Meffre S, Lai C K, Khositanont S, Chaodumrong P, Udchachon M, Ekins S, Halpin J. The configuration of Greater Gondwana — Evidence from LA ICPMS, U-Pb geochronology of detrital zircons from the Palaeozoic and Mesozoic of Southeast Asia and China[J]. Gondwana Res, 2014, 26(1): 31–51.
[63] Nie Xiaosong, Xia Xiaoping, Lai Chun-Kit, Wang Yuejun, Long Xiaoping. Where was the Ailaoshan Ocean and when did it open: A perspective based on detrital zircon evidence from the Paleozoic sequences in the Ailaoshan Belt and western Yangtze Block[J]. Gondwana Res (in review).
[64] Sun W H, Zhou M F, Gao J F, Yang Y H, Zhao X F, Zhao J H. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precamb Res, 2009, 172(1): 99–126.
[65] Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precamb Res, 2007, 152(1): 27–47.
[66] Zhou M F, Yan D P, Kennedy A K, Li Y, Ding J. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth Planet Sci Lett, 2002, 196(1): 51–67.

相似文献/References:

[1]郭海锋,夏小平,韦刚健,等.湘南上堡花岗岩中电气石LA-MC-ICPMS原位微区硼同位素分析及地质意义[J].地球化学,2014,43(01):11.
 GUO Hai-feng,XIA Xiao-ping,WEI Gang-jian,et al.LA-MC-ICPMS in-situ boron isotope analyses of tourmalines from the Shangbao granites (southern Hunan Province) and its geological significance[J].Geochimica,2014,43(05):11.
[2].活体珊瑚微量元素对硼同位素组成影响及硼掺入珊瑚的形式[J].地球化学,2012,41(05):401.
 XIAO Jun,XIAO Ying-kai*,JIN Zhang-dong,et al.The influence of trace elements on boron isotopic composition of living corals and the incorporation species of boron into corals[J].Geochimica,2012,41(05):401.

备注/Memo

收稿日期(Received): 2015-01-08; 改回日期(Revised): 2015-03-12; 接受日期(Accepted): 2015-03-25
基金项目: 国家自然科学基金(41173007); 中国科学院135项目(GIGCAS-135-Y234151001)
作者简介: 聂小松(1989–), 男, 硕士研究生, 地球化学专业。E-mail: niexiaosong011087@163.com
* 通讯作者(Corresponding author): XIA Xiao-ping, E-mail: xpxia@gig.ac.cn; Tel: +86-20-85292137

更新日期/Last Update: 2015-09-30