PDF下载 分享
[1]杨金朝,夏 嘉,王思波,等.过成熟页岩孔隙结构变化的石英管热模拟研究[J].地球化学,2016,45(04):407-418.
 YANG Jin-zhao,XIA Jia,WANG Si-bo and SONG Zhi-guang*.Quartz-tube thermal simulation study on the pore structure transformation in over-matured shales[J].Geochimica,2016,45(04):407-418.
点击复制

过成熟页岩孔隙结构变化的石英管热模拟研究

参考文献/References:

[1] Chalmers G R L, Bustin R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Nor-theastern British Columbia, Canada[J]. Int J Coal Geol, 2007, 70(2): 223-239.
[2] Chalmers G R L, Bustin R M. Lower Cretaceous gas shales in Northeastern British Columbia, Part I: Geological controls on methane sorption capacity[J]. Bull Can Pet Geol, 2008, 56(1): 1-21.
[3] Mark E. Curtis, Brian J. Cardott, Sondergeld C H, Rai C S. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. Int J Coal Geol, 2012, 8(4): 26-31.
[4] Fishman N S, Hackley P C, Lowers H A, Hill R J, Egenhoff S O, Eberl D D, Blum A E. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. Int J Coal Geol, 2012, 7(12): 32-50.
[5] 胡海燕. 富有机质Woodford页岩孔隙演化的热模拟实验[J]. 石油学报, 2013, 34(5): 820-825.
Hu Hai-yan. Porosity evolution of the organic-rich shale with thermal maturity increasing[J]. Acta Pet Sinica, 2013, 34(5): 820-825 (in Chinese with English abstract).
[6] 马骁轩, 冉勇. 茂名油页岩中干酪根的热模拟地球化学演变及表征[J]. 地球化学, 2013, 42(4): 373-378.
Ma Xiao-xuan, Ran Yong. Simulation and characterization of thermal evolution of kerogen in Maoming oil shale[J]. Geo-chimica, 2013, 42(4): 373-378 (in Chinese with English ab-stract).
[7] 吴松涛, 朱如凯, 崔京钢, 崔景伟, 白斌, 张响响, 金旭, 朱德升, 游建昌, 李晓红. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176.
Wu Song-tao, Zhu Ru-kai, Cui Jing-gang, Cui Jing-wei, Bai Bin, Zhang Xiang-xiang, Jin Xu, Zhu De-sheng, You Jian-chang, Li Xiao-hong. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Pet Explor Develop, 2015, 42(2): 167-176 (in Chinese with English abstract).
[8] 程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013, 38(5): 737-741.
Cheng Peng, Xiao Xian-ming. Gas content of organic-rich shales with very high maturities[J]. J China Coal Soc, 2013, 38(5): 737-741 (in Chinese with English abstract).
[9] Tian H, Pan L, Xiao X M, Wilkins R W T, Meng Z P, Huang B J. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Mar Pet Geol, 2013, 48(1): 8-19.
[10] Tian H, Pan L, Zhang T W, Xiao X M, Meng Z P, Huang B J. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China [J]. Mar Pet Geol, 2015, 62(1): 28-43.
[11] Cao T T, Song Z G, Wang S B, Cao X X, Li Y, Xia J. Charac-terizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China [J]. Mar Pet Geol, 2015, 61(7): 140-150.
[12] 刘德汉, 肖贤明, 田辉, 闵育顺, 周秦, 程鹏, 申家贵. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241.
Liu Dehan, Xiao Xianming, Tian Hui, Min Yushun, Zhou Qin, Cheng Peng, Shen Jiagui. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Metho-dology and geological applications[J]. Chinese Sci Bull, 2013, 58(13): 1228-1241 (in Chinese).
[13] Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. J Am Chem Soc, 1938, 60(2): 309- 319.
[14] Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. J Am Chem Soc, 1951, 73(1): 373-380.
[15] 王飞宇, 关晶, 冯伟平, 包林燕. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40(6): 764-768.
Wang Fei-yu, Guan Jing, Feng Wei-ping, Bao Lin-yan. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Pet Explor Develop, 2013, 40(6): 764-768 (in Chinese with English abstract).
[16] Dorsch J. Determination of effective porosity of mudrocks — A feasibility study [R]. Office of Scientific and Technical In-formation Technical Reports, 1995: 1-70.
[17] Krevelen V. Coal: Typology, Chemistry, Physics, Consti-tution[M]. Amsterdam: Elsevier Scientific Publishing Company, 1981: 1-514.
[18] 郭秋麟, 陈晓明, 宋焕琪, 郑曼, 黄金亮, 陈宁生, 高日丽. 泥页岩埋藏过程孔隙度演化与预测模型探讨[J]. 天然气地球科学, 2013, 24(3): 439-449.
Guo Qiu-lin, Chen Xiao-ming, Song Huan-qi, Zheng Man, Huang Jin-liang, Chen Ning-sheng, Gao Ri-li. Evolution and models of shale porosity during burial process[J]. Nat Gas Geosci, 2013, 24(3): 439-449 (in Chinese with English ab-stract).
[19] 王义凤, 王东良, 马成华, 李剑, 李志生, 陈践发, 王晓波. 烃源岩高—过成熟阶段排烃机理[J]. 石油学报, 2013, 34(1): 51-56.
Wang Yi-feng, Wang Dong-liang, Ma Cheng-hua, Li Jian, Li Zhi-sheng, Chen Jian-fa, Wang Xiao-bo. Mechanism of hy-drocarbon expulsion from source rocks at high-over maturation stage[J]. Acta Pet Sinica, 2013, 34(1): 51-56 (in Chinese with English abstract).
[20] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity[M]. 2nd ed. London: Academic Press, 1982: 220-221.
[21] 杨峰, 宁正福, 张世栋, 胡昌蓬, 杜立红, 刘慧卿. 基于氮气吸附实验的页岩孔隙结构表征[J]. 天然气工业, 2013, 33(4): 135-140.
Yang Feng, Ning Zheng-fu, Zhang Shi-dong, Hu Chang-peng, Du Li-hong, Liu Hui-qing. Characterization of pore structures in shales through nitrogen adsorption experiment [J]. Nat Gas Ind, 2013, 33(4): 135-140 (in Chinese with English abstract).
[22] 曹涛涛. 南方古生界不同时代及地区页岩孔隙结构特征及控制因素[D]. 广州: 中国科学院广州地球化学研究所, 2014.
Cao Tao-tao. The characteristics of pore structure and their controlling factors of Paleozoic shales from different age and region in Southern China[D]. Guangzhou: Guangzhou Insti-tute of Geochemistry, Chinese Academy of Sciences, 2014 (in Chinese and English abstract).
[23] Groen J C, Peffer L A A, Pérez-Ramirez J. Pore size determi-nation in modified micro- and mesoporous materials. Pitfalls and limitations in gas desorption data analysis[J]. Micropor-ous Mesoporous Mater, 2003, 60(1/3): 1-17.
[24] Chen J, Xiao X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129(3): 173-181.
[25] Cander H. Sweet spots in shale gas and liquids plays: Prediction of fluid composition and reservoir pressure[R]. Search and Discovery Article 40936, 2012.
[26] Modica C J, Lapierre S G. Estimation of kerogen porosity in source rocks as a function of thermal transformation: Ex-ample from the Mowry Shale in the Powder River Basin of Wyoming[J]. AAPG Bulletin, 2012, 96(1): 87-108.
[27] 崔景伟, 朱如凯, 崔京钢. 页岩孔隙演化及其与残留烃量的关系: 来自地质过程约束下模拟实验的证据[J]. 地质学报, 2013, 87(5): 730-736.
Cui Jing-wei, Zhu Ru-kai, Cui Jing-gang. Relationship of porous evolution and residual hydrocarbon: Evidence from modeling experiment with geological constraint[J]. Acta Geol Sinica, 2013, 87(5): 730-736 (in Chinese with English ab-stract).
[28] 汪吉林, 刘桂建, 王维忠, 张善进, 袁雷雷. 川东南龙马溪组页岩孔裂隙及渗透性特征[J]. 煤炭学报, 2013, 38(5): 772-777.
Wang Ji-lin, Liu Gui-jian, Wang Wei-zhong, Zhang Shan-jin, Yuan Lei-lei. Characterristic of pore-fissure and permeability of shales in the Longmaxi Formation in southeastern Sichuan Basin[J]. J China Coal Soc, 2013, 38(5): 772-777 (in Chinese with English abstract).
[29] Gorbanenko O O, Ligouis B. Changes in optical properties of liptinite macerals from early mature to post mature stage in Posidonia Shale (Lower Toarcian, NW Germany)[J]. Int J Coal Geol, 2014, 133(9): 47-59.
[30] Curtis M E, Cardott B J, Sondergeld C H, Rai C S. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. Int J Coal Geol, 2012, 103(8): 26-31.
[31] 吉利明, 马向贤, 夏燕青, 邱军利. 黏土矿物甲烷吸附性能与微孔隙体积关系[J]. 天然气地球科学, 2013, 25(2): 141-152.
Ji Li-ming, Ma Xiang-xian, Xia Yan-qing, Qiu Jun-li. Rela-tionship between methane adsorption capacity of clay minerals and micropore volume[J]. Nat Gas Geosci, 2013, 25(2): 141-152 (in Chinese with English abstract).
[32] Fishman N S, Hackley P C, Lowers H A, Hill R J, Egenhoff S O, Eberl D D, Blum A E. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. Int J Coal Geol, 2012, 103(7): 32-50.
[33] 吉利明, 邱军利, 宋之光, 夏燕青. 黏土岩孔隙内表面积对甲烷吸附能力的影响[J]. 地球化学, 2014, 43(3): 238-244.
Ji Li-ming, Qiu Jun-li, Song Zhi-guang, Xia Yan-qing. Impact of internal surface area of pores in clay rocks on their adsorption capacity of methane[J]. Geochimica, 2014, 43(3): 238-244 (in Chinese with English abstract).
[34] Zhang T W, Ellis G S, Ruppel S C, Milliken K, Yang R S. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Org Geochem, 2012, 47: 120-131.
[35] 曹涛涛, 宋之光, 王思波, 夏嘉. 不同页岩及干酪根比表面积和孔隙结构的比较研究[J]. 中国科学: 地球科学, 2015, 45(2): 139-151.
Cao Taotao, Song Zhiguang, Wang Sibo, Xia Jia. A comparative study of the specific surface area and pore structure of different shales and their kerogens[J]. Sci China: Earth Sci, 2015, 45(2): 139-151 (in Chinese).
[36] Hu H A, Zhang T W, Wiggins-Camacho J D, Ellis G S, Lewan M D, Zhang X L. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J]. Mar Pet Geol, 2015, 59(7): 114-128.

备注/Memo

收稿日期(Received): 2015-12-13; 改回日期(Revised): 2016-03-28; 接受日期(Accepted): 2016-05-20
基金项目: 中国科学院战略性先导科技专项B类(XDB10010200); 国家自然科学基金(41273058)
作者简介: 杨金朝(1990-), 男, 硕士研究生, 主要从事页岩高温高压生烃模拟研究。E-mail: yangjinzhao@gig.ac.cn
* 通讯作者(Corresponding author): SONG Zhi-guang, E-mail: zsong@gig.ac.cn , Tel: +86-20-85290861

更新日期/Last Update: 2016-07-30