PDF下载 分享
[1]毛 喆,李 丹,钟 音*,等.硫化亚铁矿物的生物合成及其对六溴环十二烷的还原脱溴研究[J].地球化学,2016,45(06):601-613.
 MAO Zhe,LI Dan,ZHONG Yin*,et al.Study on biosynthesization of FeS and reductive debromination of hexabromocyclododecane (HBCD)[J].Geochimica,2016,45(06):601-613.
点击复制

硫化亚铁矿物的生物合成及其对六溴环十二烷的还原脱溴研究

参考文献/References:

[1] UNEP. Additional information on hexabromocyclododecane (HBCD) for Stockholm Convention [C]. Persistent Organic Pollutants Review Committee, UNEP, 2013.
[2] Law R J, Allchin C R, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit C A. Levels and trends of brominated flame retardants in the European environment [J]. Chemosphere, 2006, 64(2): 187-208.
[3] Tomy G T, Budakowski W, Halldorson T, Whittle DM, Keir MJ, Marvin C, MacInnis G, Alaee M. Biomagnification of α- and γ- hexabromocyclododecane isomers in a Lake Ontario food web [J]. Environ Sci Technol, 2004, 38(8): 2298-2303.
[4] Remberger M, Sternbeck J, Palm A, Kaj L, Stromberg K, Brorstrom-Lunden E. The environmental occurrence of hexabromocyclododecane in Sweden [J]. Chemosphere, 2004, 54(1): 9-21.
[5] Eljarrat E, de la Cal A, Raldua D, Duran C, Barceló D. Oc-currence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain) [J]. Environ Sci Technol, 2004, 38(9): 2603-2608.
[6] Marvin C H, Tomy G T, Alaee M, Macinnis G. Distribution of hexabromocyclododecane in Detroit River suspended sedi-ments [J]. Chemosphere, 2006, 64(2): 268-275.
[7] Stapleton H M, Dodder N G, Kucklick J R, Reddy C M, Schantz M M, Becker P R, Gulland F, Porter B J, Wise S A. Determination of HBCD, PBDEs and MeO-BDEs in California sea lions (Zalophus californianus) stranded between 1993 and 2003 [J]. Mar Pollut Bull, 2006, 52(5): 522-531.
[8] Verreault J, Gabrielsen G V, Chu S G, Muir D, Andersen M, Hamaed A, Letcher R J. Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: Glaucous gulls and polar bears [J]. Environ Sci Technol, 2005, 39(16): 6021-6028.
[9] de Wit C A, Alaee M, Muir D C G. Levels and trends of bro-minated flame retardants in the Arctic [J]. Chemosphere, 2006, 64(2): 209-233.
[10] Goscinny S, Vandevijvere S, Maleki M, van Overmeire I, Windal I, Hanot V, Blaude M, Vleminckx C, van Loco J. Dietary intake of hexabromocyclododecane diastereoisomers (alpha-, beta-, and gamma-HBCD) in the Belgian adult popu-lation [J]. Chemosphere, 2011, 84(3): 279-288.
[11] Zhang X, Yang F, Xu C, Liu W P, Wen S, Xu Y. Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell [J]. Toxicol In Vitro, 2008, 22(6): 1520-1527.
[12] Zhang J, Williams T D, Abdallah M A, Harrad S, Chipman, J K, Viant, M R. Transcriptomic and metabolomic approaches to investigate the molecular responses of human cell lines exposed to the flame retardant hexabromocyclododecane (HBCD) [J]. Toxicol In Vitro, 2015, 29(8): 2116-2123.
[13] Davis J W, Gonsior S J, Markham D A, Friederich U, Hunziker R W, Ariano J M. Biodegradation and product identification of [C-14] hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment [J]. Environ Sci Technol, 2006, 40(17): 5395-5401.
[14] Heeb N V, Zindel D, Geueke B, Kohler H E, Lienemann P. Biotransformation of hexabromocyclododecanes (HBCDs) with LinB-an HCH-converting bacterial enzyme [J]. Environ Sci Technol, 2012, 46(12): 6566-6574.
[15] Yamada T, Takahama Y, Yamada Y. Isolation of Pseudomonas sp. strain HB01 which degrades the persistent brominated flame retardant gamma-hexabromocyclododecane [J]. Biosci Biotechnol, Biochem, 2009, 73(7): 1674-1678.
[16] Davis J W, Gonsior S, Marty G, Ariano J. The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments [J]. Water Res, 2005, 39(6): 1075-1084.
[17] Gerecke A C, Giger W, Hartmann P C, Heeb N V, Kohler H E, Schmid P, Zennegg M, Kohler M. Anaerobic degradation of brominated flame retardants in sewage sludge [J]. Chemos-phere, 2006, 64(2): 311-317.
[18] Zhao Y, Zhang X, Sojinu O S S. Thermodynamics and photochemical properties of alpha, beta, and gamma-hexab-rom?ocyclo?dodecanes: A theoretical study [J]. Chemosphere, 2010, 80(2): 150-156.
[19] Harrad S, Abdallah M A, Covaci A. Causes of variability in concentrations and diastereomer patterns of hexabromocyc-lododecanes in indoor dust [J]. Environ Int, 2009, 35(3): 573-579.
[20] 高亚杰, 张娴, 颜昌宙. 水环境中六溴环十二烷的光降解研究[J]. 环境化学, 2011, 30(3): 598-603.
Gao Ya-jie, Zhang Xian, Yan Chang-zhou. Photodegradation of hexabromocyclododecanes in water [J]. Environ Chem, 2011, 30(3): 598-603 (in Chinese with English abstract).
[21] Covaci A, Gerecke A C, Law R J, Voorspoels S, Kohler M, Heeb N V, Leslie H, Allchin C R, de Boer J. Hexabromocyc-lododecanes (HBCDs) in the environment and humans: A re-view [J]. Environ Sci Technol, 2006, 40(12): 3679-3688.
[22] Lo K W, Saha-Roy S C, Jans U. Investigation of the reaction of hexabromocyclododecane with polysulfide and bisulfide in methanol/water solutions [J]. Chemosphere, 2012, 87(2): 158- 162.
[23] Ward J C. The structure and properties of some iron sulphides [J]. Rev Pure Appl Chem, 1970, 20: 175-206.
[24] Butler E C, Hayes K F. Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide [J]. Environ Sci Technol, 1999, 33(12): 2021-2027.
[25] Butler E C, Hayes K F. Kinetics of the transformation of ha-logenated aliphatic compounds by iron sulfide [J]. Environ Sci Technol 2000, 34(3): 422-429.
[26] Elsner M, Schwarzenbach R P, Haderlein S B. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants [J]. Environ Sci Technol, 2004, 38(3): 799-807.
[27] Kuder T, Wilson J T, Philp P, He Y T. Carbon isotope frac-tionation in reactions of 1, 2-dibromoethane with FeS and hydrogen sulfide [J]. Environ Sci Technol, 2012, 46(14): 7495-7502.
[28] Liu X M, Peng P A, Fu J M, Huang W L. Effects of FeS on the transformation kinetics of gamma-hexachlorocyclohexane [J]. Environ Sci Technol, 2003, 37(9): 1822-1828.
[29] Paknikar K M, Nagpal V, Pethkar A V, Rajwade J M. Degra-dation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers [J]. Sci Technol Adv Mat, 2005, 6(s3/4): 370-374.
[30] Pirnie E F, Talley J W, Hundal L S. Abiotic transformation of DDT in aqueous solutions [J]. Chemosphere, 2006, 65(9): 1576-1582.
[31] Rickard D. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125℃: The rate equation [J]. Geochim Cosmochim Acta, 1997, 61(1): 115-134.
[32] 柯杭, 李莉, 张旭. 生物合成硫化亚铁对地下水中六价铬的去除效果研究[C]. 中国环境科学学会学术年会浦华环保优秀论文集. 昆明: 中国环境科学学会, 2013: 174-179.
Ke Hang, Li Li, Zhang Xu. Effect of biological iron sulfide on Cr(VI)-containing groundwater treatment [C]. Proceedings of Annual Conference of Chinese Society for Environmental Sciences on Puhua Environmental Protection. Kunming: Chinese Society for Environmental Sciences, 2013: 174-179 (in Chinese).
[33] 谢翼飞, 李旭东, 李福德. 生物硫铁复合材料处理含铬废水及铬资源化研究[J]. 中国环境科学, 2009, 29(12): 1260- 1265.
Xie Yi-fei, Li Xu-dong, Li Fu-de. Application of biological iron sulfide composites in chromium-containing wastewater treatment and chromium reclamation [J]. China Environ Sci, 2009, 29(12): 1260-1265 (in Chinese with English abstract).
[34] Rickard D. Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms [J]. Geochim Cosmochim Acta, 1995, 59(21): 4367-4379.
[35] Lennie A R, Redfern S A, Champness P E, Stoddart C P, Schofield P F, Vaughan D J. Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study [J]. Am Mineral, 1997, 82(3): 302-309.
[36] Pósfai M, Buseck P R, Bazylinski D A, Frankel R B. Iron sulfides from magnetotactic bacteria: Structure, composition, and phase transitions [J]. Am Mineral, 1998, 83(11): 1469-1481.
[37] Benning L G, Wilkin R T, Barnes H L. Reaction pathways in the Fe-S system below 100 degrees [J]. Chem Geol, 2000, 167(1/2): 25-51.
[38] Wilkin R T, Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species [J]. Geochim Cosmochim Acta, 1996, 60(21): 4167- 4179.
[39] Mandrino D. XPS and SEM of unpolished and polished FeS surface [J]. Mater Sci Technol, 2011, 45(4): 325-328.
[40] Herbert R B, Benner S G, Pratt A R, Blowes D W. Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria [J]. Chem Geol, 1998, 144(1): 87-97.
[41] Liang C H, Wang H, Huang N B. Effects of sulphate-reducing bacteria on corrosion behaviour of 2205 duplex stainless steel [J]. J Iron Steel Res Int, 2014, 21(4): 444-450.
[42] Mcintyre N S, Zetaruk D G. X-ray photoelectron spectroscopic studies of iron oxides[J]. Anal. Chem, 1977, 49(11): 1521-1529.
[43] Jeong H Y, Han Y S, Park S W, Hayes K F. Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization [J]. Geochim Cosmochim Acta, 2010, 74(11): 3182-3198.
[44] Neal A L, Techkarnjanaruk S, Dohnalkova A, Mccready D, Peyton B M, Geesey G G. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sul-fate-reducing bacteria [J]. Geochim Cosmochim Acta, 2001, 65(2): 223-235.
[45] 罗丽卉, 谢翼飞, 李旭东. 生物硫铁复合材料处理含铜废水及机理研究[J]. 中国环境科学, 2012, 32(2): 249-253.
Luo Li-hui, Xie Yi-fei, Li Xu-dong. Biological iron sulfide composites in the treatment of copper-contaminated waste-water and its mechanism [J]. China Environ Sci, 2012, 32(2): 249-253 (in Chinese with English abstract).
[46] Butler E C, Hayes K. Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide [J]. Environ Sci Technol, 1998, 32(9): 1276-1284.
[47] Butler E C, Hayes K. Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal [J]. Environ Sci Technol, 2001, 35(19): 3884- 3891.
[48] Choi J, Choi K, Lee W. Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1, 1, 1-trichloroethane by FeS [J]. J Hazard Mater, 2009, 162(2): 1151-1158.
[49] Kim E J, Murugesan K, Kim J H, Tratnyek P G, Chang Y S. Remediation of trichloroethylene by FeS-coated iron nano-particles in simulated and real groundwater: Effects of water chemistry [J]. Ind Eng Chem Res, 2013, 52(27): 9343- 9350.
[50] 张艳伟. 六溴环十二烷异构体及其对映体的环境分布与生物富集[D]. 天津: 南开大学, 2014.
Zhang Yan-wei. Environmental distribution and bioaccumulation of hexabromocyclododecane diastereomers and enantiomers [D]. Tianjin: Nankai University, 2014 (in Chinese with English abstract).
[51] Barontini F, Cozzani V, Cuzzola A, Petarca L. Investigation of hexabromocyclododecane thermal degradation pathways by gas chromatography/mass spectrometry [J]. Rapid Commun Mass Spectrom, 2001, 15(9): 690-698.
[52] Davis J W, Gonsior S J, Markham D A, Friederich U, Hunziker R W, Ariano J M. Biodegradation and product identification of [14C] hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment [J]. Environ Sci Technol, 2006, 40(17): 5395-5401.
[53] Tso C P, Shih Y H. The transformation of hexabromocyclo-dodecane using zerovalent iron nanoparticle aggregates [J]. J Hazard Mater, 2014, 277(4): 76-83.
[54] 刘相梅. 硫化亚铁体系下林丹的非生物转化[D]. 北京: 中国科学院研究生院, 2002.
Liu Xiang-mei. Abiotic transformation of γ-hexachlorocyclohexane (HCH) in FeS system [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2002 (in Chinese with English abstract).

备注/Memo

收稿日期(Received): 2016-01-16; 改回日期(Revised): 2016-03-28; 接受日期(Accepted): 2016-05-24
基金项目: 国家自然科学基金(41120134006, 41473107)
作者简介: 毛喆(1990-), 女, 硕士研究生, 环境工程专业。E-mail: zhemer@163.com
* 通讯作者(Corresponding author): ZHONG Yin, E-mail: zhongyin@gig.ac.cn, Tel: +86-20-85290142

更新日期/Last Update: 2016-11-30