PDF下载 分享
[1]马东东,刘 芳,祝红丽,等.菲律宾马尼拉新生代火山岩的Sr-Nd-Pb-Ca 同位素特征: 对南海俯冲过程中深部碳循环的制约[J].地球化学,2018,47(06):593-603.[doi:10.19700/j.0379-1726.2018.06.001]
 MA Dong-dong,LIU Fang,ZHU Hong-li,et al.Sr-Nd-Pb-Ca isotopic compositions of the Cenozoic volcanic rocks in Manila, Philippines: Implication to deep carbon cycle during the subduction of South China Sea[J].Geochimica,2018,47(06):593-603.[doi:10.19700/j.0379-1726.2018.06.001]
点击复制

菲律宾马尼拉新生代火山岩的Sr-Nd-Pb-Ca 同位素特征: 对南海俯冲过程中深部碳循环的制约

参考文献/References:

[1] Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth’s interior [J]. Earth Planet Sci Lett, 2010, 298(1): 1–13.
[2] Sleep N H, Zahnle K. Carbon dioxide cycling and implications for climate on ancient Earth [J]. J Geophys Res Planet, 2001, 106(E1): 1373–1399.
[3] Depaolo D J. Calcium isotopic variations produced by biolo-gical, kinetic, radiogenic and nucleosynthetic processes [J]. Rev Mineral Geochem, 2004, 55(1): 255–288.
[4] Dasgupta R, Hirschmann M M, Withers A C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions [J]. Earth Planet Sci Lett, 2004, 227(1/2): 73–85.
[5] Huang S C, Farka? J, Jacobsen S B. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle [J]. Geochim Cosmochim Acta, 2011, 75(17): 4987–4997.
[6] Liu F, Li X, Wang G Q, Liu Y F, Zhu H L, Kang J T, Huang F, Sun W D, Xia X P, Zhang Z F. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau: Evidence from magnesium and calcium isotopes [J]. J Geophys Res Solid Earth, 2017, 122(12): 9729–9744. doi: 10.1002/ 2017JB014206
[7] Wedepohl K H. The composition of the continental crust [J]. Geochim Cosmochim Acta, 1995, 59(7): 1217–1232.
[8] 李亮, 蒋少涌. 钙同位素地球化学研究进展[J]. 中国地质, 2008, 35(6): 1088–1100.
Li Liang, Jiang Shao-yong. Advance in calcium isotope geo-chemistry [J]. Geol China, 2008, 35(6): 1088–1100 (in Chi-nese with English abstract).
[9] Heuser A, Eisenhauer A. A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance [J]. Bone, 2010, 46(4): 889.
[10] 张洪铭, 李曙光. 深部碳循环及同位素示踪: 回顾与展望[J]. 中国科学: 地球科学, 2012, 42(10): 1459–1472.
Zhang Hongming, Li Shuguang. Deep carbon recycling and isotope tracing: Review and prospect [J]. Sci China Earth Sci, 2012, 42(10): 1459–1472 (in Chinese).
[11] F?rster H, Oles D, Knittel U, Defant M J, Torres R C. The Macolod Corridor: A rift crossing the Philippine island arc [J]. Tectonophysics, 1990, 183(1): 265–271.
[12] Castillo P R, Newhall C G. Geochemical constraints on possible subduction components in lavas of Mayon and Taal Volcanoes, southern Luzon, Philippines [J]. J Petrol, 2004, 45(6): 1089–1108.
[13] Aurelio M A. Shear partitioning in the Philippines: Con?straints from Philippine Fault and global positioning system data [J]. Island Arc, 2000, 9(4): 584–597.
[14] Mukasa S B, Flower M F J, Miklius A. The Nd-, Sr- and Pb-isotopic character of lavas from Taal, Laguna de Bay and Arayat volcanoes, southwestern Luzon, Philippines: Implications for arc magma petrogenesis [J]. Tectonophysics, 1994, 235(1/2): 205–221.
[15] Deng J H, Yang X Y, Qi H, Zhang Z F, Mastoi A S, Sun W D. Early Cretaceous high-Mg adakites associated with Cu-Au mineralization in the Cebu Island, Central Philippines: Impli-cation for partial melting of the paleo-Pacific Plate [J]. Ore Geol Rev, 2017, 88: 251–269.
[16] Deng J H, Yang X Y, Zhang Z F, Santosh M. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes [J]. Lithos, 2015, 230(6): 166–179.
[17] Yumul G P, Balce G R, Dimalanta C B, Datuin R T. Distribution, geochemistry and mineralization potentials of Philippine ophiolite and ophiolitic sequences [J]. Ofioliti, 1997, 22(1): 47–56.
[18] Yumul G P Jr, Dimalanta C B, Tomayo R A Jr, Maury R C. Collision, subduction and accretion events in the Philippines: A synthesis[J]. Island Arc, 2003, 12(2): 77–91.
[19] Suzuki S, Takemura S, Yumul G P Jr, David S D Jr, Asiedu D K. Composition and provenance of the Upper Cretaceous to Eocene sandstones in Central Palawan, Philippines: Constraints on the tectonic development of Palawan [J]. Island Arc, 2000, 9(4): 611–626.
[20] 余梦明, 闫义, 黄奇瑜, 刘海泉, 张新昌, 兰青, 陈文煌, 钱坤. 菲律宾蛇绿岩及其大地构造意义[J]. 海洋地质与第四纪地质, 2015, 35(6): 53–71.
Yu Meng-ming, Yan Yi, Huang Chi-yue, Liu Hai-quan, Zhang Xin-chang, Lan Qing, Chen Wen-huang, Qian Kun. Philippine ophiolites and their tectonic significance [J]. Mar Geol Qua-tern Geol, 2015, 35(6): 53–71 (in Chinese with English ab-stract).
[21] 叶蕾, 刘金菊, 牛耀龄, 郭鹏远, 孙普, 崔慧霞. 山西繁峙新生代玄武岩地幔源区及成因探讨: 元素及Sr-Nd-Pb-Hf同位素地球化学证据[J]. 岩石学报, 2015, 31(1): 161–175.
Ye Lei, Liu Jin-ju, Niu Yao-ling, Guo Peng-yuan, Sun Pu, Cui Hui-xia. Mantle sources and petrogenesis of the Cenozoic basalts in Fanshi, Shanxi Province: Geochemical and Sr-Nd- Pb-Hf isotopic evidence [J]. Acta Petrol Sinica, 2015, 31(1): 161–175 (in Chinese with English abstract).
[22] 赖绍聪, 秦江锋, 李学军, 臧文娟. 昌宁-孟连缝合带干龙塘-弄巴蛇绿岩地球化学及Sr-Nd-Pb同位素组成研究[J]. 岩石学报, 2010, 26(11): 3195–3205.
Lai Shao-cong, Qin Jiang-feng, Li Xue-jun, Zang Wen-juan. Geochemistry and Sr-Nd-Pb isotopic features of the Ganlongtang-Nongba ophiolite from the Changning-Menglian suture zone [J]. Acta Petrol Sinica, 2010, 26(11): 3195–3205 (in Chinese with English abstract).
[23] Zhu H L, Zhang Z F, Wang G Q, Liu Y F, Liu F, Li X, Sun W D. Calcium Isotopic fractionation during ion-exchange column chemistry and thermal ionisation mass spectrometry (TIMS) determination [J]. Geostand Geoanal Res, 2016, 40(2): 185– 194.
[24] Liu F, Zhu H L, Li X, Wang G Q, Zhang Z F. Calcium isotopic fractionation and compositions of geochemical reference materials [J]. Geostand Geoanal Res, 2017, 41(4): 675–688.
[25] Ohno T, Hirata T. Simultaneous determination of mass-de?pen-dent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by multiple collector-ICP- mass spectrometry [J]. Anal Sci, 2007, 23(11): 1275–1280.
[26] 张晨蕾, 祝红丽, 刘峪菲, 刘芳, 张兆峰. 热电离质谱(TIMS)测定Ca同位素时Sr干扰影响的实验评价[J]. 质谱学报, 2017, 38(5): 567–573.
Zhang Chen-lei, Zhu Hong-li, Liu Yu-fei, Liu Fang, Zhang Zhao-feng. Experimental assessing about Sr inerference effect on Ca isotope measurements on Thermal Ionization Mass Spectrometry [J]. J Chinese Mass Spect Soc, 2017, 38(5): 567–573 (in Chinese with English abstract).
[27] 刘芳, 祝红丽, 谭德灿, 刘峪菲, 康晋霆, 朱建明, 王桂琴, 张兆峰. 热电离质谱测定钙同位素过程中双稀释剂的选择[J]. 质谱学报, 2016, 37(4): 310–318.
Liu Fang, Zhu Hong-li, Tan De-can, Liu Yu-fei, Kang Jin-ting, Zhu Jian-ming, Wang Gui-qin, Zhang Zhao-feng. Optimization of calcium isotopic compositions by Thermal Ionization Mass Spectrometer [J]. J Chinese Mass Spect Soc, 2016, 37(4): 310–318 (in Chinese with English abstract).
[28] 刘峪菲, 祝红丽, 刘芳, 王桂琴, 许继峰, 张兆峰. 钙同位素化学分离方法研究[J]. 地球化学, 2015, 44(5): 469–476.
Liu Yu-fie, Zhu Hong-li, Liu Fang, Wang Gui-qin, Xu Ji-feng, Zhang Zhao-feng. Methodological study of chemical separa-tion of calcium for TIMS measurements [J]. Geochimica, 2015, 44(5): 469–476 (in Chinese with English abstract).
[29] Sun S-s, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geol Soc London Spec Publ, 1989, 42(1): 313– 345.
[30] Hofmann A W. Chemical differentiation of the Earth: The re-lationship between mantle, continental crust, and oceanic crust [J]. Earth Planet Sci Lett, 1988, 90(3): 297–314.
[31] Kang J T, Ionov D A, Liu F, Zhang C L, Golovin A V, Qin L P, Zhang Z F, Huang F. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth [J]. Earth Planet Sci Lett, 2017, 474: 128–137.
[32] Zindler A, Hart S. Chemical geodynamics [J]. Ann Rev Earth Planet Sci, 1986, 14(1): 493–571.
[33] Manikyamba C, Saha A, Santosh M, Ganguly S, Singh M R, Rao D V S, Lingadevaru M. Neoarchaean felsic volcanic rocks from the Shimoga greenstone belt, Dharwar Craton, India: Geochemical fingerprints of crustal growth at an active continental margin [J]. Precamb Res, 2014, 252: 1–21.
[34] Johnson E R, Wallace P J, Delgado Granados H, Manea V C, Kent A J R, Bindeman I N, Donegan C S. Subduction-related volatile recycling and magma generation beneath Central Mexico: Insights from melt inclusions, oxygen isotopes and geodynamic models [J]. J Petrol, 2009, 50(9): 1729–1764.
[35] Kelemen P B, Hangh?j K, Greene A R. One view of the geo-chemistry of subduction-related magmatic arcs, with an em-phasis on primitive andesite and lower crust [J]. Treat Geo-chem, 2007, 138: 1–70.
[36] Tatsumi Y, Kogiso T. The subduction factory: Its role in the evolution of the Earth’s crust and mantle [J]. Geol Soc London Spec Publ, 2003, 219(1): 55–80.
[37] Karig D E. Accreted terranes in the northern part of the Phi-lippine Archipelago [J]. Tectonics, 1983, 2(2): 211–236.
[38] Pubellier M, Monnier C, Maury R, Tamayo R. Plate kine?matics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia [J]. Tectonophysics, 2004, 392(1/4): 9–36.
[39] Huang S C, Farkas J, Jacobsen S B. Calcium isotopic fractio-nation between clinopyroxene and orthopyroxene from mantle peridotites [J]. Earth Planet Sci Lett, 2010, 292(3): 337–344.
[40] Zhao X M, Zhang Z F, Huang S C, Liu Y F, Li X, Zhang H F. Coupled extremely light Ca and Fe isotopes in peridotites [J]. Geochim Cosmochim Acta, 2017, 208: 368–380.
[41] Wang W Z, Zhou C, Qin T, Kang J T, Huang S C, Wu Z Q, Huang F. Effect of Ca content on equilibrium Ca isotope fractionation between orthopyroxene and clinopyroxene [J]. Geochim Cosmochim Acta, 2017, 219: 44–56.
[42] Feng C Q, Qin T, Huang S C, Wu Z Q, Huang F. First- principles investigations of equilibrium calcium isotope fractionation between clinopyroxene and Ca-doped orthopyroxene [J]. Geochim Cosmochim Acta, 2014, 143: 132–142.
[43] Kang J T, Zhu H L, Liu Y F, Liu F, Wu F, Hao Y T, Zhi X C, Zhang Z F, Huang F. Calcium isotopic composition of mantle xenoliths and minerals from Eastern China [J]. Geochim Cosmochim Acta, 2015, 174: 335–344.
[44] Jaques A L, Green D H. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts [J]. Contrib Mineral Petrol, 1980, 73(3): 287–310.
[45] Fantle M S, Depaolo D J. Variations in the marine Ca cycle over the past 20 million years [J]. Earth Planet Sci Lett, 2005, 237(1/2): 102–117.
[46] Farkas J, Buhl D, Blenkinsop J, Veizer J. Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence from δ44/40Ca of marine skeletal carbonates [J]. Earth Planet Sci Lett, 2007, 253(1): 96–111.
[47] Yang W, Teng F Z, Zhang H F, Li S G. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle [J]. Chem Geol, 2012, 328(11): 185–194.

备注/Memo

收稿日期(Received): 2017-11-29; 改回日期(Revised): 2018-01-11; 接受日期(Accepted): 2018-01-15
基金项目: 国家自然科学基金(41773009, 41373007, 41673040); 中国地质大学地质过程与矿产资源国家重点实验室科学基金(GPMR201708); 中国博士后科学基金(2015M582003)
作者简介: 马东东(1991–), 男, 硕士研究生, 同位素地球化学研究方向。E-mail: madongdong@gig.ac.cn
* 通讯作者(Corresponding author): DENG Jiang-hong, E-mail: jhdeng0507@163.com; Tel: +86-532-82893368

更新日期/Last Update: 2018-11-30