PDF下载 分享
[1]杨源显,王小林*,席斌斌,等.应用拉曼光谱定量分析流体中硫酸盐质量摩尔浓度: 内标选择和流体组分对分析结果的影响[J].地球化学,2019,48(04):403-419.[doi:10.19700/j.0379-1726.2019.04.008]
 YANG Yuan-xian,WANG Xiao-lin*,XI Bin-bin,et al.Influences of internal standards and fluid composition on Raman spectroscopic determination of the molality of dissolved sulfate[J].Geochimica,2019,48(04):403-419.[doi:10.19700/j.0379-1726.2019.04.008]
点击复制

应用拉曼光谱定量分析流体中硫酸盐质量摩尔浓度: 内标选择和流体组分对分析结果的影响

参考文献/References:

[1] 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮.流体包裹体[M].北京: 科学出版社, 2004: 1-487.
Lu Huan-zhang, Fan Hong-rui, Ni Pei, Ou Guang-xi, Shen Kun, Zhang Wen-huai.Fluid Inclusion [M].Beijing: Science Press, 2004: 1-487 (in Chinese).
[2] 翟裕生.地球系统科学与成矿学研究[J].地学前缘, 2004, 11(1): 1-10.
Zhai Yu-sheng.Earth system sciences and the study on metallogenesis [J].Earth Sci Front, 2004, 11(1): 1-10 (in Chinese with English abstract).
[3] Bodnar R J.Fluids in planetary systems [J].Elements, 2005, 1: 9-12.
[4] 金之钧, 王骏, 张根生, 王俊玲, 张发强.滨里海盆地盐下油气成藏主控因素及勘探方向[M].石油实验地质, 2007, 273(2): 111-115.
Jin Zhi-jun, Wang Jun, Zhang Gen-sheng, Wang Jun-ling, Zhang Fa-qiang.Main factors controlling hydrocarbon reservoirs and exploration directions in the pre-salt sequence in precaspian basin [M].Pet Geol Exp, 2007, 273(2): 111-115 (in Chinese with English abstract).
[5] Heinrich C A, Candela P A.Fluids and ore formation in the Earth’s crust [J].Treat Geochem, 2014, 13: 1-28.
[6] Roedder E.Fluid inclusions [J].Mineral Soc Am, 1984, 12(6): 71-77.
[7] 倪培.前言: 流体包裹体研究进展[J].南京大学学报(自然科学版), 2012, 48(3): 237-239.
Nei Pei.Progress of researches on fluid inclusions [J].J Nanjing Univ, 2012, 48(3): 237-239 (in Chinese with English abstract).
[8] 陈勇.流体包裹体激光拉曼光谱分析方法及应用[M].东营: 中国石油大学出版社, 2015: 1-182.
Chen Yong.Raman spectroscopy for fluid inclusion analysis and applications [M].Dongying: China University of Petroleum Press, 2015: 1-182 (in Chinese with English abstract).
[9] Dubessy J, Geisler D, Kosztolanyi C, Vernet M.The determination of sulphate in fluid inclusions using the M.O.L.E.Raman microprobe.Application to a keuper halite and geochemical consequences [J].Geochim Cosmochim Acta, 1983, 47(1): 1-10.
[10] 邵世才, 李朝阳.扬子地块西缘灯影组层控铅锌矿床成因的地球化学论证[J].矿物岩石地球化学通报, 1997, 16(1): 32-36.
Shao Shi-cai, Li Chao-yang.The geochemical constraints on genesis of stratabound Pb-Zn deposits in Dengying Formation at western margin of Yangtze Platform [J].Bull Mineral Petrol Geochem, 1997, 16(1): 32-36 (in Chinese with English abstract).
[11] Frezzotti M L, Tecce F, Casagli A.Raman spectroscopy for fluid inclusion analysis [J].J Geochem Explor, 2012, 112: 1-20.
[12] Walter B F, Steele-MacInnis M, Markl G.Sulfate brines in fluid inclusions of hydrothermal veins: Compositional determinations in the system H2O-Na-Ca-Cl-SO4 [J].Geochim Cosmochim Acta, 2017, 209: 184-203.
[13] 张劼, 雷怀彦, 汪卫国, 郝赛赛, 龚楚君.南海北部陆坡沉积物中硫酸盐浓度变化模型与硫酸盐甲烷界面(SMI)的计算[J].地学前缘, 2015, 22(4): 290-298.
Zhang Jie, Lei Huai-yan, Wang Wei-guo, Hao Sai-sai, Gong Chu-jun.A model to calculate the depth of the SMI in sediments of the northern South China Sea [J].Earth Sci Front, 2015, 22(4): 290-298 (in Chinese with English abstract).
[14] Czamanske K G, Roedder E, Burns F C.Neutron activation analysis of fluid inclusions for copper, manganese, and zinc [J].Science, 1963, 140(3565): 401-403.
[15] Hollister S L, Crawford M L.Short course in fluid inclusion: Application to petrology [J].Mineral Assoc Can, 1981, 6: 13-38.
[16] Mernagh T P, Wilde A R.The use of the laser Raman microprobe for the determination of salinity in fluid inclusions [J].Geochim Cosmochim Acta, 1989, 53: 765-771.
[17] Chou I, Paster D L, Seitz J C.High-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe [J].Geochim Cosmochim Acta, 1990, 54: 535-543.
[18] Meere P A, Banks D A.Upper crustal fluid migration: An example from the Variscides of SW Ireland [J].J Geol Soc, 1997, 154(6): 975-985.
[19] Vandeginste V, Swennen R, Gleeson A G, Ellam R M.Thermochemical sulphate reduction in the Upper Devonian Cairn Formation of the Fairholme carbonate complex (South-West Alberta, Canadian Rockies): Evidence from fluid inclusions and isotopic data [J].Sedimentology, 2009, 56(2): 439-460.
[20] Walter B F, Burisch M, Markl G.Long-term chemical evolution and modification of continental basement brines: A field study from the Schwarzwald, SW Germany [J].Geofluids, 2016, 16(3): 604-623.
[21] Burisch M, Gerdes A, Walter B F, Neumann U, Fettel M, Markl G.Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany [J].Ore Geol Rev, 2017, 81: 42-61.
[22] Scott H S.The decrepitation method applied to minerals with fluid inclusions [J].Econ Geol, 1948, 43: 637-654.
[23] Mavrogenes J A, Bodnar R J, Graney J R, McQueen K G, Burlinson K.Comparison of decrepitation, microthermometric and compositional characteristics of fluid inclusions in barren and auriferous mesothermal quartz veins of the Cowra Creek Gold District, New South Wales, Australia [J].J Geochem Explor, 1995, 54(3): 167-175.
[24] Burisch M, Walter B F, W?lle M, Markl G.Tracing fluid migration pathways in the root zone below unconformity- related hydrothermal veins: Insights from trace element systematics of individual fluid inclusions [J].Chem Geol, 2016, 429: 44-50.
[25] Prokopyev I R, Borisenko A S, Borovikov A A, Pavlova G G.Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): Implications based on melt and fluid inclusions [J].Mineral Petrol, 2016, 110(6): 845-859.
[26] 蓝廷广, 胡瑞忠, 范宏瑞, 毕献武, 唐燕文, 周丽, 毛伟, 陈应华.流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用[J].岩石学报, 2017, 33(10): 3239- 3262.
Lan Ting-guang, Hu Rui-zhong, Fan Hong-rui, Bi Xian-wu, Tang Yan-wen, Zhou Li, Mao Wei, Chen Ying-hua.In-situ analysis of major and trace elements in fluid inclusion and quartz: LA-ICP-MS method and applications to ore deposits [J].Acta Petrol Sinica, 2017, 33(10): 3239-3262 (in Chinese with English abstract).
[27] Allan M M, Yardley B W D, Forbes L J, Shmulovich K I, Banks D A, Shepherd T J.Validation of LA-ICPMS fluid inclusion analysis with synthetic fluid inclusions [J].Am Mineral, 2005, 90: 1767-1775.
[28] Leisen M, Dubessy J, Boiron M C, Lach P.Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICP-MS and Pitzer thermodynamic modeling of ice melting temperature [J].Geochim Cosmochim Acta, 2012, 90: 110-125.
[29] Steele-MacInnis M, Ridley J, Lecumberri-Sanchez P, Schlegel T U, Heinrich C A.Application of low-temperature microthermometric data for interpreting multicomponent fluid inclusion compositions [J].Earth Sci Rev, 2016, 159: 14-35.
[30] Burke E A J.Raman microspectrometry of fluid inclusions [J].Lithos, 2001, 55(1): 139-158.
[31] Chou I-M, Wang A.Application of laser Raman micro-analyses to Earth and planetary materials [J].J Asian Earth Sci, 2017, 145: 309-333.
[32] Pasteris J D, Wopenka B, Seitz J C.Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions [J].Geochim Cosmochim Acta, 1988, 52: 979-988.
[33] Lu W, Chou I-M, Burruss R C, Song Y C.A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts [J].Geochim Cosmochim Acta, 2007, 71(16): 3969-3978.
[34] Wu J, Zheng H.Quantitative measurement of the concentration of sodium carbonate in the system of Na2CO3-H2O by Raman spectroscopy [J].Chem Geol, 2010, 273(3/4): 267-271.
[35] Sun Q, Qin C.Raman OH stretching band of water as an internal standard to determine carbonate concentrations[J].Chem Geol, 2011, 283(3/4): 274-278.
[36] Wang X L, Chou I-M, Hu W X, Burruss R C, Sun Q, Song Y C.Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations [J].Geochim Cosmochim Acta, 2011, 75(14): 4080-4093.
[37] Sun Q, Zhao L, Li N, Liu J.Raman spectroscopic study for the determination of Cl- concentration (molarity scale) in aqueous solutions: Application to fluid inclusions [J].Chem Geol, 2010, 272(1/4): 55-61.
[38] Wang X, Hu W X, Chou I-M.Raman spectroscopic characterization on the OH stretching bands in NaCl-Na2CO3- Na2SO4-CO2-H2O systems: Implications for the measurement of chloride concentrations in fluid inclusions [J].J Geochem Explor, 2013, 132: 111-119.
[39] 丁俊英, 倪培, 饶冰, 周进, 朱筱婷.显微激光拉曼光谱测定单个包裹体盐度的实验研究[J].地质论评, 2004, 50(2): 203-209.
Ding Jun-ying, Ni Pei, Rao Bing, Zhou Jin, Zhu Xiao-ting.Evaluation of the laser Raman microprobe method for the determination of salinity in a single fluid inclusion by using synthetic fluid inclusions [J].Geol Rev, 2004, 50(2): 203-209 (in Chinese with English abstract).
[40] Rosso K M, Bodnar R J.Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2 [J].Geochim Cosmochim Acta, 1995, 59: 3961-3975.
[41] Aarnoutse P J, Westerhuis J A.Quantitative Raman reaction monitoring using the solvent as internal standard [J].Anal Chem, 2005, 77(5): 1228-1236.
[42] Schmidt C, Seward T M.Raman spectroscopic quantification of sulfur species in aqueous fluids: Ratios of relative molar scattering factors of Raman bands of H2S, HS-, SO2, HSO4-, SO42-, S2O32-, S3- and H2O at ambient conditions and information on changes with pressure and temperature [J].Chem Geol, 2017, 467: 64-75.
[43] 陈勇, 周瑶琪, 章大港.几种盐水溶液拉曼工作曲线的绘制[J].光散射学报, 2002, 14(4): 216-223.
Chen Yong, Zhou Yao-qi, Zhang Da-gang.Trying to determine the salinity of hydrous liquid by laser Raman spectroscopy [J].Chinese J Light Scatt, 2002, 14(4): 216-223 (in Chinese with English abstract).
[44] 叶美芳, 王志海, 唐南安.盐水溶液中常见阴离子团的激光拉曼光谱定量分析研究[J].西北地质, 2009, 42(3): 120- 126.
Ye Mei-fang, Wang Zhi-hai, Tang Nan-an.Quantitative analysis of several common anions in salt solutions using laser Raman spectrometer [J].Northw Geol, 2009, 42(3): 120-126 (in Chinese with English abstract).
[45] 王小林.熔融硅管合成包裹体实验研究与应用[D].南京: 南京大学地球科学与工程学院, 2011.
Wang Xiao-lin.An experimental study with fluid inclusions synthesized in fused silica tubes and its applications [D].Nanjing: Nanjing University, 2011.
[46] 王乾乾, 孙樯.水溶液中硫酸根离子的拉曼光谱定量分析[J].光谱学与光谱分析, 2016, 36(2): 430-435.
Wang Qian-qian, Sun Qiang.The quantitative analysis of Raman spectroscopy to sulfate ion in aqueous solution [J].Spect Spect Anal, 2016, 36(2): 430-435 (in Chinese with English abstract).
[47] Herrmann A G, Knake D, Schneider J, Peters H.Geochemistry of modern seawater and brines from salt pans: Main components and bromine distribution [J].Contrib Mineral Petrol, 1973, 40(): 1-24.
[48] Holland H D.The Chemical Evolution of Atomosphere and Oceans [M].New York: Princeton University Press, 1984: 1-582.
[49] Horita J, Zimmermann H, Holland H D.The chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates [J].Geochim Cosmochim Acta, 2002, 66: 3733-3756.
[50] Chou I-M, Bassett W A, Anderson A J, Mayanovic R A, Shang L B.Containment of fluid samples in the hydrothermal diamond-anvil cell without the use of metal gaskets: Performance and advantages for in situ analysis [J].Rev Sci Instrum, 2008, 79(11): 115103.https://doi.org/10.1063/1.3013788
[51] Parker J H, Feldman D W, Ashkin M.Raman scattering by silicon and germanium [J].Phys Rev, 1967, 155: 712-714.
[52] Rosasco G J, Roedder E.Application of a new Raman microprobe spectrometer to non-destructive analysis of sulfate and other ions in individual phase in fluid inclusions in minerals [J].Geochim Cosmochim Acta, 1979, 43: 1907-1915.
[53] Schmidt C.Raman spectroscopic study of a H2O + Na2SO4 solution at 21-600 °C and 0.1 MPa to 1.1 GPa: Relative differential Raman scattering cross sections and evidence of the liquid-liquid transition [J].Geochim Cosmochim Acta, 2009, 73(2): 425-437.
[54] Fraley P E, Rao K N.High resolution infrared spectra of water vapor v1 and v2 bands of H216O [J].J Mol Spect, 1969, 29(1/3): 348-364.
[55] Perchard J P.Anharmonicity and hydrogen bonding.III.Analysis of the near infrared spectrum of water trapped in argon matrix [J].Chem Phys, 2001, 273(2): 217-233.
[56] Wopenka B, Pasteris J D.Limitations to quantitative analysis of fluid inclusions in geological samples by laser Raman microprobe spectroscopy [J].Soc Appl Spect, 1986, 40(2): 144-151.
[57] Wopenka B, Pasteris J D.Raman intensities and detection limits of geochemically relevant gas mixtures for a laser Raman microprobe [J].Anal Chem, 1987, 59: 2165-2170.
[58] Wall T T, Hornig D F.Raman spectra of water in concentrated ionic solutions [J].J Chem Phys, 1967, 47(2): 784-792.

相似文献/References:

[1]高婉露,王小林*,丘 靥,等.C-H-O-N体系挥发分的拉曼定量分析: 压力、温度和流体组成的影响[J].地球化学,2020,49(02):121.[doi:10.19700/j.0379-1726.2020.02.001]
 GAO Wan-lu,WANG Xiao-lin*,QIU Ye,et al.Raman spectroscopic measurements of the composition and pressure of C-H-O-N volatiles: Influences of pressure, temperature and fluid composition[J].Geochimica,2020,49(04):121.[doi:10.19700/j.0379-1726.2020.02.001]
[2]张鼐,毛光剑,王汇彤,等.大分子烃类拉曼光谱特征及在烃包裹体研究中的意义[J].地球化学,2010,39(04):345.
 ZHANG Nai,MAO Guang-jian,WANG Hui-tong,et al.Raman spectroscopic characteristics of macromolecular hydrocarbons and its significance in the study of hydrocarbon inclusions[J].Geochimica,2010,39(04):345.

备注/Memo

收稿日期(Received): 2018-09-29; 改回日期(Revised): 2018-11-06; 接受日期(Accepted): 2018-11-30 基金项目: 国家自然科学基金面上项目(41573054) 作者简介: 杨源显(1995-), 男, 硕士研究生, 矿物学、岩石学、矿床学专业。E-mail: 2229778928@qq.com * 通讯作者(Corresponding author): WANG Xiao-lin, E-mail: xlinwang@nju.edu.cn; Tel: +86-25-89680867

更新日期/Last Update: 2019-07-30