PDF下载 分享
[1]杨 超,熊永强*,张金川.中国不同沉积类型页岩生烃有机孔发育差异[J].地球化学,2019,48(06):544-554.[doi:10.19700/j.0379-1726.2019.06.003]
 YANG Chao,XIONG Yong-qiang* and ZHANG Jin-chuan.Developmental differences of secondary organic pores among marine, lacustrine, and transitional shale in China[J].Geochimica,2019,48(06):544-554.[doi:10.19700/j.0379-1726.2019.06.003]
点击复制

中国不同沉积类型页岩生烃有机孔发育差异

参考文献/References:

[1] Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks [J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
[2] Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/ transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units [J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
[3] 邹才能, 朱如凯, 白斌, 杨智, 吴松涛, 苏玲, 董大忠, 李新景. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864.
Zou Cai-neng, Zhu Ru-kai, Bai Bin, Yang Zhi, Wu Song-tao, Su Ling, Dong Da-zhong, Li Xin-jing. First discovery of nano-pore throat in oil and gas reservoir and its scientific value [J]. Acta Petrol Sinica, 2011, 27(6): 1857-1864 (in Chinese with English abstract).
[4] 孙亮, 王晓琦, 金旭, 李建明, 吴松涛. 微纳米孔隙空间三维表征与连通性定量分析[J]. 石油勘探与开发, 2016, 43(3): 490-498.
Sun Liang, Wang Xiao-qi, Jin Xu, Li Jian-ming, Wu Song-tao. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space [J]. Pet Explor Develop, 2016, 43(3): 490-498.
[5] Bernard S, Wirth R, Schreiber A, Schulz H M, Horsfield B. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin) [J]. Int J Coal Geol, 2012, 103: 3-11.
[6] Milliken K L, Rudnicki M, Awwiller D N, Zhang T. Organic matter-hosted pore system, Marcellus formation (Devonian), Pennsylvania [J]. AAPG Bulletin, 2013, 97(2): 177-200.
[7] Ko L T, Loucks R G, Zhang T W, Ruppel S C, Shao D Y. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments [J]. AAPG Bulletin, 2016, 100(11): 1693-1722.
[8] Hackley P C, Cardott B J. Application of organic petrography in North American shale petroleum systems: A review [J]. Int J Coal Geol, 2016, 163: 8-51.
[9] Loucks R G, Reed R M, Ruppel S C, Jarvie D M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale [J]. J Sediment Res, 2009, 79(12): 848-861.
[10] Loucks R G, Reed R M, Ruppel S C, Hammes U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores [J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[11] Yang C, Zhang J C, Han S B, Xue B, Zhao Q R. Classification and the developmental regularity of organic-associated pores (OAP) through a comparative study of marine, transitional, and terrestrial shales in China [J]. J Nat Gas Sci Eng, 2016, 36(A): 358-368.
[12] Curtis M E, Cardott B J, Sondergeld C H, Rai C S. Development of organic porosity in the Woodford Shale with increasing thermal maturity [J]. Int J Coal Geol, 2012, 103: 26-31.
[13] Klaver J, Desbois G, Littke R, Urai J L. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales [J]. Mar Petrol Geol, 2015, 59: 451-466.
[14] Reed R M, Loucks R G. Low-thermal-maturity (< 0.7% VR) mudrock pore systems: Mississippian Barnett Shale, southern Fort Worth Basin [J]. GCAGS J, 2015, 4: 15-28.
[15] 吴松涛, 朱如凯, 崔京钢, 崔景伟, 白斌, 张响响, 金旭, 朱德升, 游建昌, 李晓红. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176.
Wu Song-tao, Zhu Ru-kai, Cui Jing-gang, Cui Jing-wei, Bai Bin, Zhang Xiang-xiang, Jin Xu, Zhu De-sheng, You Jian-chang, Li Xiao-hong. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China [J]. Pet Explor Develop, 2015, 42(2): 167-176.
[16] 吉利明, 吴远东, 贺聪, 苏龙. 富有机质泥页岩高压生烃模拟与孔隙演化特征[J]. 石油学报, 2016, 37(2): 172-181.
Ji Li-ming, Wu Yuan-dong, He Cong, Su Long. High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organic-rich mudstone and shale [J]. Acta Pet Sinica, 2016, 37(2): 172-181 (in Chinese with English abstract).
[17] 张金川, 徐波, 聂海宽, 汪宗余, 林拓. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140.
Zhang Jin-chuan, Xu Bo, Nie Hai-kuan, Wang Zong-yu, Lin Tuo. Exploration potential of shale gas resources in China [J]. Nat Gas Ind, 2008, 28(6): 136-140 (in Chinese with English abstract).
[18] 杨超, 张金川, 唐玄. 鄂尔多斯盆地陆相页岩微观孔隙类型及对页岩气储渗的影响[J]. 地学前缘, 2013, 20(4): 240- 250.
Yang Chao, Zhang Jin-chuan, Tang Xuan. Microscopic pore types and its impact on the storage and permeability of continental shale gas, Ordos basin [J]. Earth Sci Front, 2013, 20(4): 240-250 (in Chinese with English abstract).
[19] Tian H, Pan L, Xiao X M, Wilkins R W T, Meng Z P, Huang B J. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods [J]. Mar Petrol Geol, 2013, 48: 8-19.
[20] 杨超, 张金川, 李婉君, 荆铁亚, 孙睿, 王中鹏, 何伟, 卢亚亚. 辽河坳陷沙三、沙四段泥页岩微观孔隙特征及其成藏意义[J]. 石油与天然气地质, 2014, 35(2): 286-294.
Yang Chao, Zhang Jin-chuan, Li Wan-jun, Jing Tie-ya, Sun Rui, Wang Zhong-peng, He Wei, Lu Ya-ya. Microscopic pore characteristics of Sha-3 and Sha-4 shale and their accumulation signi?cance in Liaohe Depression [J]. Oil Gas Geol, 2014, 35(2): 286-294 (in Chinese with English abstract).
[21] Yang C, Zhang J C, Wang X Z, Tang X, Chen Y C, Jiang L L, Gong X. Nanoscale pore structure and fractal characteristics of a marine-continental transitional shale: A case study from the lower Permian Shanxi Shale in the southeastern Ordos Basin, China [J]. Mar Petrol Geol, 2017, 88: 54-68.
[22] 包书景, 林拓, 聂海宽, 任收麦. 海陆过渡相页岩气成藏特征初探: 以湘中坳陷二叠系为例[J]. 地学前缘, 2016, 23(1): 44-53.
Bao Shu-jing, Lin tuo, Nie Hai-kuan, Ren Shou-mai. Preliminary study of the transitional facies shale gas reservoir characteristics: Taking Permian in the Xiangzhong depression as an example [J]. Earth Sci Front, 2016, 23(1): 44-53 (in Chinese with English abstract).
[23] 熊永强, 张海祖, 耿安松. 热演化过程中干酪根碳同位素组成的变化[J]. 石油实验地质, 2004, 26(5): 484-487.
Xiong Yong-qiang, Zhang Hai-zu, Geng An-song. Variation of carbon isotopic composition of kerogen during thermal evolution [J]. Pet Geol Exp, 2004, 26(5): 484-487 (in Chinese with English abstract).
[24] Schoenherr J, Littke R, Urai J L, Kukla P A, Rawahi Z. Polyphase thermal evolution in the infra-Cambrian Ara Group (South Oman Salt Basin) as deducted by maturity of solid reservoir bitumen [J]. Org Geochem, 2007, 38: 1293-1318.
[25] 王万春, 徐永昌, Schidlowski M, Faber E, Stahl W. 不同沉积环境及成熟度干酪根的碳氢同位素地球化学特征[J]. 沉积学报, 1995, 15(S): 133-137.
Wang Wan-chun, Xu Yong-chang, Schidlowski M, Faber E, Stahl W. The geochemical characteristics of carbon and hydrogen isotopes of kerogens of various maturity and depositional environment [J]. Acta Sedimentol Sinica, 1995, 15(S): 133-137 (in Chinese with English abstract).
[26] Han Y J, Horsfield B, Wirth R, Mahlstedt N, Bernard S. Oil retention and porosity evolution in organic-rich shales [J]. AAPG Bulletin, 2017, 101(6): 807-827.
[27] Emmanuel S, Eliyahu M, Day-Stirrat R J, Hofmann R, Macaulay C I. Impact of thermal maturation on nano-scale elastic properties of organic matter in shales [J]. Mar Pet Geol, 2016, 70: 175-184.
[28] L?hr S C, Baruch E T, Hall P A, Kennedy M J. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? [J]. Org Geochem, 2015, 87: 119-132.
[29] Wei L, Mastalerz M, Schimmelmann A, Chen Y Y. Influence of soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales [J]. Int J Coal Geol, 2014, 132: 38-50.
[30] 王飞宇, 关晶, 冯伟平, 包林燕. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40(6): 764- 768.
Wang Fei-yu, Guan Jing, Feng Wei-ping, Bao Lin-yan. Evolution of overmature marine shale porosity and implication to the free gas volume [J]. Pet Explor Develop, 2013, 40(6): 764-768.
[31] 马勇, 钟宁宁, 程礼军, 潘哲君, 李红英, 谢庆明. 渝东南两套富有机质页岩的孔隙结构特征——来自FIB-SEM的新启示[J]. 石油实验地质, 2015, 37(1): 109-116.
Ma Yong, Zhong Ning-ning, Cheng Li-jun, Pan Zhe-jun, Li Hong-ying, Xie Qing-ming. Pore structure of two organic-rich shales in southeastern Chongqing area: Insight from focused ion beam scanning electron microscope (FIB-SEM) [J]. Pet Geol Exp, 2015, 37(1): 109-116 (in Chinese with English abstract).
[32] 曹涛涛, 宋之光, 王思波, 夏嘉. 不同页岩及干酪根比表面积和孔隙结构的比较研究[J]. 中国科学: 地球科学, 2015, 45(2): 139-151.
Cao Taotao, Song Zhiguang, Wang Sibo, Xia Jia. A comparative study of the specific surface area and pore structure of different shales and their kerogens [J]. Sci China Earth Sci, 2015, 58(4): 510-522.
[33] Klaver J, Desbois G, Littke R, Urai J L. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales [J]. Mar Pet Geol, 2015, 59: 451-466.
[34] Duan D D, Zhang D N, Ma X X, Yang Y, Ran Y, Mao J D. Chemical and structural characterization of thermally simulated kerogen and its relationship with microporosity [J]. Mar Pet Geol, 2018, 89(1): 4-13.
[35] Wang Y M, Li X J, Chen B, Wu W, Dong D Z, Zhang J, Han J, Ma J, Dai B, Wang H, Jiang S. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk [J]. Pet Explor Develop, 2018, 45(3): 402-411.
[36] 曹庆英, 于冰, 王丽华. 高(过)成熟干酪根结构的研究[J]. 石油勘探与开发, 1995, 22(1): 20-24.
Cao Qing-ying, Yu Bing, Wang Li-hua. TEM texture of highly/over-matured kerogens [J]. Pet Explor Develop, 1995, 22(1): 20-24 (in Chinese with English abstract).
[37] 姚素平, 焦堃, 李苗春, 吴浩. 煤和干酪根纳米结构的研究进展[J]. 地球科学进展, 2012, 27(4): 367-378.
Yao Su-ping, Jiao Kun, Li Miao-chun, Wu Hao. Advances in research of coal and kerogen nanostructure [J]. Adv Earth Sci, 2012, 27(4): 367-378 (in Chinese with English abstract).
[38] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1): 40-44.
Zhang Hui. Genetical type of pores in coal reservoir and its research significance [J]. J China Coal Soc, 2001, 26(1): 40-44 (in Chinese with English abstract).
[39] 郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报, 1987, 12(4): 51-57.
Hao Qi. Discussions on morphological character and origin of micropores in coal [J]. J China Coal Soc, 1987, 12(4): 51-56 (in Chinese with English abstract).
[40] 魏思民. 煤阶与煤层含气性关系研究[J]. 中州煤炭, 2009, 11: 17-19.
Wei Si-min. Study on relationship between coal rank and content of coalbed methane [J]. Zhongzhou Coal, 2009, 11: 17-19 (in Chinese with English abstract).
[41] 周龙刚, 吴财芳. 黔西比德-三塘盆地主采煤层孔隙特征[J]. 煤炭学报, 2012, 37(11): 1878-1884.
Zhou Long-gang, Wu Cai-fang. Pore characteristics of the main coal seams in Bide-Santang Basin in western Guizhou province [J]. J China Coal Soc, 2012, 37(11): 1878-1884 (in Chinese with English abstract).
[42] 肖贤明, 金奎励. 显微组分的成烃作用模式[J]. 科学通报, 1991, 36(3): 208-211.
Xiao Xianming, Jin Kuili. Hydrocarbon generation model of macerals [J]. Chinese Sci Bull, 1991, 36(3): 208-224 (in Chinese).
[43] Jarvie D M, Hill R J, Ruble T E, Pollastro R M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment [J]. AAPG Bulletin, 2007, 91(4): 475- 499.

备注/Memo

收稿日期(Received): 2019-05-05; 改回日期(Revised): 2019-09-05; 接受日期(Accepted): 2019-09-10
基金项目: 中国科学院战略性先导科技专项(B类) (XDB10010501); 中国博士后科学基金(2017M620391); 广东省自然科学基金(2018A030313234)
作者简介: 杨超(1988-), 男, 博士后, 主要从事油气地球化学和致密储层评价方面的研究工作。E-mail: yangchao@gig.ac.cn
* 通讯作者(Corresponding author): Xiong Yong-qiang, E-mail: xiongyq@gig.ac.cn; Tel: +86-20-85290744

更新日期/Last Update: 2019-11-30