PDF下载 分享
 ZENG Wei-zhu,ZHOU Guo-yi and SONG Zhi-guang*.Influence of pore structure on the shale oil accumulation of the Qingshankou Formation in the Songliao Basin[J].Geochimica,2019,48(06):632-643.[doi:10.19700/j.0379-1726.2019.06.011]



[1] 张厚福, 方朝亮, 高先志, 张枝焕, 蒋有录. 石油地质学[M]. 第4版. 北京: 石油工业出版社, 2008: 1-345.
Zhang Hou-fu, Fang Cao-liang, Gao Xian-zhi, Zhang Zhi-huan, Jiang You-lu, Petroleum Geology [M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 1-345 (in Chinese).
[2] Jarvie D M. Shale Resource systems for oil and gas: Part 1 — Shale-gas resource systems [J]. AAPG Memoir, 2012. 97: 69-87.
[3] Jarvie D M. Shale resource systems for oil and gas: Part 2 — Shale-oil resource systems [J]. AAPG Memoir, 2012, 97: 89-119.
[4] Liang C, Chao Y C, Jiang Z X, Wu J, Song G Q, Wang Y S. Shale oil potential of lacustrine black shale in the Eocene Dongying depression [J]. AAPG Bulletin, 2017, 101(11): 1835-1858.
[5] Li Q, You X L, Jiang Z X, Zhao X Z, Zhang R F, A type of continuous petroleum accumulation system in the Shulu sag, Bohai Bay basin, eastern China [J]. AAPG Bulletin, 2017, 101(11): 1791-1811.
[6] Huang W B, Hersi O S, Lu S F, Deng S W. Quantitative modelling of hydrocarbon expulsion and quality grading of tight oil lacustrine source rocks: Case study of Qingshankou 1 member, central depression, southern Songliao Basin, China [J]. Mar Pet Geol, 2017, 84: 34-48.
[7] 曾维主, 宋之光, 曹新星. 松辽盆地北部青山口组烃源岩含油性分析[J]. 地球化学, 2018, 47(4): 345-353.
Zeng Wei-zhu, Song Zhi-guang, Cao Xin-xing. Oil potential of Qingshankou Formation source rocks in northern Songliao Basin [J]. Geochimica, 2018. 47(4): 345-353 (in Chinese with English abstract).
[8] Huang Z K, Chen J P, Xue H T, Wang Y J, Wang M, Deng C P. Microstructural characteristics of the Cretaceous Qingshankou Formation shale, Songliao Basin [J]. Pet Explor Develop, 2013, 40(1): 61-68.
[9] Wang M, Xue H T, Tian S S, Wilkins R W T, Wang Z W. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China [J]. Mar Pet Geol, 2015, 67: 144-153.
[10] Wang M, Yang J X, Wang Z W, Lu S F. Nanometer-scale pore characteristics of lacustrine shale, Songliao Basin, NE China [J]. PLOS ONE, 2015, 10(8): 1-18.
[11] Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales [J]. AAPG Bulletin, 2009, 93(3): 329-340.
[12] Tian H, Pan L, Zhang T W, Xiao X M, Meng Z P, Huang B J. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, southwestern China [J]. Mar Pet Geol, 2015, 62: 28-43.
[13] Han Y J, Mahlstedt N, Horsfield B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion [J]. AAPG Bulletin, 2015, 99(12): 2173-2202.
[14] Loucks R G, Reed R M, Ruppel S C, Jarvie D M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale [J]. J Sediment Res, 2009, 79(11/12): 848-861.
[15] Curtis M E, Sondergeld C H, Ambrose R J, Rai C S. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging [J]. AAPG Bulletin, 2012, 96(4): 665-677.
[16] Milliken K L, Esch W L, Reed R M, Zhang T W. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas [J]. AAPG Bulletin, 2012, 96(8): 1553-1578.
[17] Clarkson C R, Solano N, Bustin R M, Bustin A M M, Chalmers G R L, He L, Melnichenko Y B, Radlinski A P, Blach T P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion [J]. Fuel, 2013, 103: 606-616.
[18] Okolo G N, Everson R C, Neomagus H W J P, Roberts M J, Sakurovs R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques [J]. Fuel, 2015, 141: 293-304.
[19] Tian H, Pan L, Xiao X M, Wilkins R W T, Meng Z P, Huang B J. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods [J]. Mar Pet Geol, 2013, 48: 8-19.
[20] Chalmers G R L, Bustin R M. A multidisciplinary approach in determining the maceral (kerogen type) and mineralogical composition of Upper Cretaceous Eagle Ford Formation [J]. Int J Coal Geol, 2017, 171: 93-110.
[21] Feng Z Q, Jia C Z, Xie X N, Zhang S, Feng Z H, Timothy A C. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China [J]. Basin Res, 2010, 22(1): 79-95.
[22] Liu C L, Wang Z L, Guo Z Q, Hong W Y, Dun C, Zhang X, Li B, Wu L Q. Enrichment and distribution of shale oil in the Cretaceous Qingshankou Formation, Songliao Basin, Northeast China [J]. Mar Pet Geol, 2017, 86: 751-770.
[23] 曾花森, 霍秋立, 张晓畅, 鄢仁勤, 姜淑杰. 应用岩石热解数据S2-TOC相关图进行烃源岩评价[J]. 地球化学, 2010, 39(6): 574-579.
Zeng Hua-sen, Huo Qiu-li, Zhang Xiao-chang, Yan Ren-qin, Jiang Shu-jie. Source rock evaluation using the S2-TOC plot from Rock-Eval pyrolysis [J]. Geochimica, 2010, 39(6): 574-579 (in Chinese with English abstract).
[24] Cavelan A, Boussafir M, Rozenbaum O, Laggoun-Defarge F. Organic petrography and pore structure characterization of low-mature and gas-mature marine organic-rich mudstones: Insights into porosity controls in gas shale systems [J]. Mar Pet Geol, 2019, 103: 331-350.
[25] Cao T T, Song Z G, Wang S B, Xia J. Characterization of pore structure and fractal dimension of Paleozoic shales from the northeastern Sichuan Basin, China [J]. J Gas Sci Eng, 2016, 35: 882-895.
[26] Wei M M, Zhang L, Xiong Y Q, Li J H, Peng P A. Nanopore structure characterization for organic-rich shale using the non-local-density functional theory by a combination of N-2 and CO2 adsorption [J]. Micropor Mesopor Mater, 2016, 227: 88-94.
[27] Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure Appl Chem, 1985, 57(4): 603-619.
[28] Clarkson C R, Freeman M, He L, Agamalian M, Melnichenko Y B, Mastalerz M, Bustin R M, Radliński A P, Blasch T P. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis [J]. Fuel, 2012, 95: 371-385.
[29] Groen J C, Peffer L A A, Pérez-Ramírez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis [J]. Micropor Mesopor Mater, 2003, 60(1-3): 1-17.
[30] Julia T, Suarez-Ruiz I, Marquez R, Ruiz B. The role of solid bitumen in the development of porosity in shale oil [J]. Int J Coal Geol, 2015, 147: 126-144.
[31] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas [J]. Mar Pet Geol, 2009, 26(6): 916-927.
[32] Loucks R G, Reed R M, Ruppel S C, Hammes U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores [J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[33] 蔡利学, 金晓辉, 肖文玲. 成岩演化作用对油气运移方式的影响——以松辽盆地西部齐家、古龙凹陷扶杨油层为例[J]. 石油与天然气地质, 2008, 29(4): 460-465.
Cai Li-xue, Jin Xiao-hui, Xiao Wen-ling. Diagenetic evolution and its effects on hydrocarbon migration: A case from the Fuyang reservoir in the Qijia-Gulong Sag, the West Songliao Basin [J]. Oil Gas Geol, 2008, 29(4): 460-465 (in Chinese with English abstract).
[34] 闫建萍, 刘池阳, 马艳萍. 成岩作用与油气侵位对松辽盆地齐家-古龙凹陷扶杨油层物性的影响[J]. 沉积学报, 2009, 27(2): 212-220.
Yan Jian-ping, Liu Chi-yang, Ma Yan-ping. Influence of diagenesis and hydrocarbon emplacement on the quality of the Fuyang Reservoir in Songliao Basin [J]. Acta Sedimentol Sinica, 2009, 27(2): 212-220 (in Chinese with English abstract).
[35] Romero-Sarmiento M F, Ducros M, Carpentier B, Lorant F, Cacas M C, Pegaz-Fiornet S, Wolf S, Rohais S, Moretti I. Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnett Shale [J]. Mar Pet Geol, 2013, 45: 315-330.
[36] Mastalerz M, Schimmelmann A, Drobniak A, Chen Y Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion [J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
[37] Chen J, Xiao X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 126: 173-181.
[38] Curtis M E, Cardott B J, Sondergeld C H, Rai C S. Development of organic porosity in the Woodford Shale with increasing thermal maturity [J]. Int J Coal Geol, 2012. 103: 26-31.
[39] Liao L L, Wang Y P, Chen C S, Shi S Y, Deng R. Kinetic study of marine and lacustrine shale grains using Rock-Eval pyrolysis: Implications to hydrocarbon generation, retention and expulsion [J]. Mar Pet Geol, 2018, 89: 164-173.
[40] Carrasco-Marin F, Alvarez-Merino M A, Moreno-Castilla C. Microporous activated carbons from a bituminous coal [J]. Fuel, 1996, 75(8): 966-970.
[41] Chalmers G R L, Ross D J K, Bustin R M. Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada [J]. Int J Coal Geol, 2012, 103: 120-131.


收稿日期(Received): 2019-04-30; 改回日期(Revised): 2019-07-03; 接受日期(Accepted): 2019-07-18
基金项目: 国家自然科学基金创新研究群体项目(41321002)
作者简介: 曾维主(1989-), 男, 博士研究生, 有机地球化学专业。E-mail: zengweizhu@gig.ac.cn
* 通讯作者(Corresponding author): SONG Zhi-guang, E-mail: zsong@gig.ac.cn; Tel: +86-20-85290861

更新日期/Last Update: 2019-11-30