PDF下载 分享
[1]孙卫东*.地球氧逸度[J].地球化学,2020,49(01):1-20.[doi:10.19700/j.0379-1726.2020.01.001]
 SUN Wei-dong *.Oxygen fugacity of Earth[J].Geochimica,2020,49(01):1-20.[doi:10.19700/j.0379-1726.2020.01.001]
点击复制

地球氧逸度

参考文献/References:

[1]Canfield D E. The early history of atmospheric oxygen: Homage to Robert A. Garrels[J]. Ann Rev Earth Planet Sci, 2005, 33: 1-36.
[2]Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
[3]Brocks J J, Logan G A, Buick R, Summons R E. Archean molecular fossils and the early rise of eukaryotes[J]. Science, 1999, 285(5430): 1033-1036.
[4]Rasmussen B, Fletcher I R, Brocks J J, Kilburn M R. Reassessing the first appearance of eukaryotes and cyanobacteria[J]. Nature, 2008, 455(7216): 1101-1104.
[5]Planavsky N J, Asael D, Hofmann A, Reinhard C T, Lalonde S V, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith A J B, Beukes N J, Bekker A, Johnson T M, Konhauser K O, Lyons T W, Rouxel O J. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event[J]. Nat Geosci, 2014, 7(4): 283-286.
[6]Eickmann B, Hofmann A, Wille M, Bui T H, Wing B A, Schoenberg R. Isotopic evidence for oxygenated Mesoarchaean shallow oceans[J]. Nat Geosci, 2018, 11(2): 133-138.
[7]Kaufman A J, Johnston D T, Farquhar J, Masterson A L, Lyons T W, Bates S, Anbar A D, Arnold G L, Garvin J, Buick R. Late Archean biospheric oxygenation and atmospheric evolution[J]. Science, 2007, 317(5846): 1900-1903.
[8]Sahoo S K, Planavsky N J, Kendall B, Wang X Q, Shi X Y, Scott C, Anbar A D, Lyons T W, Jiang G Q. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417): 546-549.
[9]Partin C A, Bekker A, Planavsky N J, Scott C T, Gill B C, Li C, Podkovyrov V, Maslov A, Konhauser K O, Lalonde S V, Love G D, Poulton S W, Lyons T W. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J]. Earth Planet Sci Lett, 2013, 369/370: 284-293.
[10]Reinhard C T, Planavsky N J, Lyons T W. Long-term sedimentary recycling of rare sulphur isotope anomalies[J]. Nature, 2013, 497(7447): 100-103.
[11]Holland H D. Volcanic gases, black smokers, and the Great Oxidation Event[J]. Geochim Cosmochim Acta, 2002, 66(21): 3811-3826.
[12]Farquhar J, Savarino J, Jackson T L, Thiemens M H. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites[J]. Nature, 2000, 404(6773): 50-52.
[13]Bekker A, Holland H D, Wang P L, Rumble D, Stein H J, Hannah J L, Coetzee L L, Beukes N J. Dating the rise of atmospheric oxygen[J]. Nature, 2004, 427(6970): 117-120.
[14]Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808): 92-95.
[15]Fike D A, Grotzinger J P, Pratt L M, Summons R E. Oxidation of the Ediacaran ocean[J]. Nature, 2006, 444(7120): 744-747.
[16]Frei R, Gaucher C, Poulton S W, Canfield D E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes[J]. Nature, 2009, 461(7261): 250-253.
[17]Liu H, Zartman R E, Ireland T R, Sun W D. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks[J]. Proc Nat Acad Sci, 2019, 116(38): 18854-18859.
[18]Hazen R M, Ewing R C, Sverjensky D A. Evolution of uranium and thorium minerals[J]. Am Mineral, 2009, 94(10): 1293-1311.
[19]Holland H D. The oxygenation of the atmosphere and oceans[J]. Philos Transact Roy Soc B Biol Sci, 2006, 361(1470): 903-915.
[20]Farquhar J, Peters M, Johnston D T, Strauss H, Masterson A, Wiechert U, Kaufman A J. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry[J]. Nature, 2007, 449(7163): 706-709.
[21]Kump L R, Barley M E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago[J]. Nature, 2007, 448(7157): 1033-1036.
[22]Canfield D E, Habicht K S, Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466): 658-661.
[23]Planavsky N J, Reinhard C T, Wang X, Thomson D, Mcgoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209): 635- 638.
[24]Crowe S A, Dossing L N, Beukes N J, Bau M, Kruger S J, Frei R, Canfield D E. Atmospheric oxygenation three billion years ago[J]. Nature, 2013, 501(7468): 535-538.
[25]Reinhard C T, Planavsky N J, Robbins L J, Partin C A, Gill B C, Lalonde S V, Bekker A, Konhauser K O, Lyons T W. Proterozoic ocean redox and biogeochemical stasis[J]. Proc Nat Acad Sci, 2013, 110(14): 5357-5362.
[26]Luo G, Ono S, Beukes N J, Wang D T, Xie S, Summons R E. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago[J]. Sci Adv, 2016, 2(5): e1600134.
[27]Gumsley A P, Chamberlain K R, Bleeker W, Soderlund U, De Kock M O, Larsson E R, Bekker A. Timing and tempo of the Great Oxidation Event[J]. Proc Natl Acad Sci, 2017, 114(8): 1811-1816.
[28]Philippot P, Avila J N, Killingsworth B, Tessalina S, Baton F, Caquineau T, Muller E, Pecoits E, Cartigny P, Lalonde S V. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event[J]. Nat Commun, 2018, 9(1): 2245.
[29]Kump L R. The rise of atmospheric oxygen[J]. Nature, 2008, 451(7176): 277-278.
[30]Karhu J A, Holland H D. Carbon isotopes and the rise of atmospheric oxygen[J]. Geology, 1996, 24(10): 867-870.
[31]Planavsky N J, Bekker A, Hofmann A, Owens J D, Lyons T W. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event[J]. Proc Nat Acad Sci, 2012, 109(45): 18300-18305.
[32]Ossa Ossa F, Eickmann B, Hofmann A, Planavsky N J, Asael D, Pambo F, Bekker A. Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event[J]. Earth Planet Sci Lett, 2018, 486: 70-83.
[33]Kump L R, Junium C, Arthur M A, Brasier A, Fallick A, Melezhik V, Lepland A, Crne A E, Luo G. Isotopic evidence for massive oxidation of organic matter following the great oxidation event[J]. Science, 2011, 334(6063): 1694-1696.
[34]Bekker A, Holland H D. Oxygen overshoot and recovery during the early Paleoproterozoic[J]. Earth Planet Sci Lett, 2012, 317: 295-304.
[35]Bekker A, Karhu J A, Kaufman A J. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America[J]. Precamb Res, 2006, 148(1): 145-180.
[36]Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186): 456-459.
[37]Reinhard C T, Planavsky N J, Gill B C, Ozaki K, Robbins L J, Lyons T W, Fischer W W, Wang C, Cole D B, Konhauser K O. Evolution of the global phosphorus cycle[J]. Nature, 2017, 541(7637): 386-389.
[38]Grotzinger J P, Fike D A, Fischer W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history[J]. Nat Geosci, 2011, 4(5): 285-292.
[39]Berner R A, Beerling D J, Dudley R, Robinson J M, Wildman R A. Phanerozoic atmospheric oxygen[J]. Ann Rev Earth Planet Sci, 2003, 31(1): 105-134.
[40]Berner R A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling[J]. Proc Nat Acad Sci, 2002, 99(7): 4172-4177.
[41]Berner R A, Canfield D E. A new model for atmospheric oxygen over Phanerozoic time[J]. Am J Sci, 1989, 289(4): 333-361.
[42]Graham J B, Aguilar N M, Dudley R, Gans C. Implications of the late Palaeozoic oxygen pulse for physiology and evolution[J]. Nature, 1995, 375(6527): 117-120.
[43]Huey R B, Ward P D. Hypoxia, global warming, and terrestrial Late Permian Extinctions[J]. Science, 2005, 308(5720): 398-401.
[44]孙卫东, 凌明星, Yin Q Z. 月球的化学演化[J]. 地球化学, 2010, 39(2): 131-141.
Sun Wei-dong, Ling Ming-xing, Yin Q Z. Chemical evolution of the Moon: A review[J]. Geochimica, 2010, 39(2): 131-141 (in Chinese with English abstract).
[45]Sun W D, Bennett V C, Eggins S M, Kamenetsky V S, Arculus R J. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas[J]. Nature, 2003, 422(6929): 294-297.
[46]Sun W D, Arculus R J, Bennett V C, Eggins S M, Binns R A. Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea)[J]. Geology, 2003, 31(10): 845-848.
[47]Arculus R J. Oxidation status of the mantle: Past and present[J]. Ann Rev Earth Planet Sci, 1985, 13(1): 75-95.
[48]Wade J, Wood B J. Core formation and the oxidation state of the Earth[J]. Earth Planet Sci Lett, 2005, 236(1/2): 78-95.
[49]Wood B J, Walter M J, Wade J. Accretion of the Earth and segregation of its core[J]. Nature, 2006, 441(7095): 825.
[50]Wood B J, Wade J, Kilburn M R. Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning[J]. Geochim Cosmochim Acta, 2008, 72(5): 1415-1426.
[51]Dai L, Karato S I. Influence of oxygen fugacity on the electrical conductivity of hydrous olivine: Implications for the mechanism of conduction[J]. Phys Earth Planet Interiors, 2014, 232: 57-60.
[52]Ryerson F J, Durham W B, Cherniak D, Lanford W. Oxygen diffusion in olivine: Effect of oxygen fugacity and implications for creep[J]. J Geophys Res Solid Earth, 1989, 94(B4): 4105- 4118.
[53]Frost D J, Mccammon C A. The redox state of Earth’s mantle[J]. Ann Rev Earth Planet Sci, 2008, 36(1): 389-420.
[54]Ballhaus C, Berry R, Green D. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle[J]. Contrib Mineral Petrol, 1991, 107(1): 27-40.
[55]Gudmundsson G, Wood B. Experimental tests of garnet peridotite oxygen barometry[J]. Contrib Mineral Petrol, 1995, 119(1): 56-67.
[56]Ballhaus C. Redox states of lithospheric and asthenospheric upper mantle[J]. Contrib Mineral Petrol, 1993, 114(3): 331- 348.
[57]Ballhaus C. A question of reduction[J]. Nature, 1993, 366(6451): 112.
[58]Bézos A, Humler E. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting[J]. Geochim Cosmochim Acta, 2005, 69(3): 711-725.
[59]Alt J C, Honnorez J, Laverne C, Emmermann R. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater-basalt interactions[J]. J Geophys Res Solid Earth, 1986, 91(B10): 10309-10335.
[60]Kelley K A, Cottrell E. Water and the oxidation state of subduction zone magmas[J]. Science, 2009, 325(5940): 605-607.
[61]Lee C T A, Luffi P, Le Roux V, Dasgupta R, Albarede F, Leeman W P. The redox state of arc mantle using Zn/Fe systematics[J]. Nature, 2010, 468(7324): 681-685.
[62]Mallmann G, O’neill H S C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb) [J]. J Petrol, 2009, 50(9): 1765-1794.
[63]Sisson T, Grove T. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism[J]. Contrib Mineral Petrol, 1993, 113(2): 143-166.
[64]Tang M, Erdman M, Eldridge G, Lee C T A. The redox “filter” beneath magmatic orogens and the formation of continental crust[J]. Sci Adv, 2018, 4(5): eaar4444.
[65]Lee C T A, Leeman W P, Canil D, Li Z X A. Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions[J]. J Petrol, 2005, 46(11): 2313-2336.
[66]Ballhaus C. Is the upper mantle metal-saturated?[J]. Earth Planet Sci Lett, 1995, 132(1-4): 75-86.
[67]Frost D J, Liebske C, Langenhorst F, Mccammon C A, Tr?nnes R G, Rubie D C. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle[J]. Nature, 2004, 428(6981): 409-412.
[68]Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky V S, Kuzmin D V. Metal saturation in the upper mantle[J]. Nature, 2007, 449(7161): 456-458.
[69]Rohrbach A, Schmidt M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling[J]. Nature, 2011, 472(7342): 209-212.
[70]Jacob D E, Kronz A, Viljoen K S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates[J]. Contrib Mineral Petrol, 2004, 146(5): 566-576.
[71]Sun W D, Hawkesworth C J, Yao C, Zhang C C, Huang R F, Liu X, Sun X L, Ireland T, Song M S, Ling M X, Ding X, Zhang Z F, Fan W M, Wu Z Q. Carbonated mantle domains at the base of the Earth’s transition zone[J]. Chem Geol, 2018, 478: 69-75.
[72]Fei Y, Bertka C M, Mysen B O. Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R.(Joe) Boyd[M]. Huston: Geochemical Society, 1999.
[73]Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y. Post-perovskite phase transition in MgSiO3[J]. Science, 2004, 304(5672): 855-858.
[74]Tschauner O, Ma C, Beckett J R, Prescher C, Prakapenka V B, Rossman G R. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite[J]. Science, 2014, 346(6213): 1100-1102.
[75]陶仁彪, 张立飞, 刘曦. 地幔氧逸度与俯冲带深部碳循环[J]. 岩石学报, 2015, 31(7): 1879-1890.
Tao Ren-biao, Zhang Li-fei, Liu Xi. Oxygen fugacity of Earth’s mantle and deep carbon cycle in the subduction zone[J]. Acta Petrol Sinica, 2015, 31(7): 1879-1890 (in Chinese with English abstract).
[76]Trail D, Watson E B, Tailby N D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere[J]. Nature, 2011, 480(7375): 79-82.
[77]Canil D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present[J]. Earth Planet Sci Lett, 2002, 195(1/2): 75-90.
[78]Li Z X A, Lee C T A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts[J]. Earth Planet Sci Lett, 2004, 228(3/4): 483-493.
[79]Canil D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas[J]. Nature, 1997, 389(6653): 842.
[80]Delano J W. Redox history of the Earth’s interior since ~3900 Ma: Implications for prebiotic molecules[J]. OrigLife Evol Biosph, 2001, 31(4/5): 311-341.
[81]Berry A J, Danyushevsky L V, O’neill H S C, Newville M, Sutton S R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle[J]. Nature, 2008, 455(7215): 960-963.
[82]Dauphas N, Craddock P R, Asimow P D, Bennett V C, Nutman A P, Ohnenstetter D. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present[J]. Earth Planet Sci Lett, 2009, 288(1/2): 255-267.
[83]Aulbach S, Viljoen K. Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: From convecting mantle source to palaeo-ocean floor and back[J]. Earth Planet Sci Lett, 2015, 431: 274-286.
[84]Aulbach S, Stagno V. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle[J]. Geology, 2016, 44(9): 751-754.
[85]Nicklas R W, Puchtel I S, Ash R D, Piccoli P M, Hanski E, Nisbet E G, Waterton P, Pearson D G, Anbar A D. Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence from V partitioning in komatiites and picrites[J]. Geochim Cosmochim Acta, 2019, 250: 49-75.
[86]Stolper D A, Keller C B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts[J]. Nature, 2018, 553(7688): 323-327.
[87]Stolper D A, Bucholz C E. Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels[J]. Proc Nat Acad Sci, 2019, 116(18): 8746-8755.
[88]Wood B J, Virgo D. Upper mantle oxidation state: Ferric iron contents of lherzolite spinels by 57Fe mossbauer spectroscopy and resultant oxygen fugacities[J]. Geochim Cosmochim Acta, 1989, 53(6): 1277-1291.
[89]Yaxley G M, Berry A J, Kamenetsky V S, Woodland A B, Golovin A V. An oxygen fugacity profile through the Siberian Craton — Fe K-edge XANES determinations of Fe3+/∑Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite[J]. Lithos, 2012, 140/141: 142-151.
[90]Woodland A B, Koch M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa[J]. Earth Planet Sci Lett, 2003, 214(1): 295-310.
[91]Ballhaus C, Ronald Frost B. The generation of oxidized CO2-bearing basaltic melts from reduced CH4-bearing upper mantle sources[J]. Geochim Cosmochim Acta, 1994, 58(22): 4931-4940.
[92]O’neill H S C, Mccammon C, Canil D, Rubie D, Ross C, Seifert F. M?ssbauer spectroscopy of mantle transition zone phases and determination of minimum Fe3+ content[J]. Am Mineral, 1993, 78(3/4): 456-460.
[93]Smith E M, Shirey S B, Nestola F, Bullock E S, Wang J H, Richardson S H, Wang W Y. Large gem diamonds from metallic liquid in Earth’s deep mantle[J]. Science, 2016, 354(6318): 1403-1405.
[94]Rohrbach A, Ghosh S, Schmidt M W, Wijbrans C H, Klemme S. The stability of Fe-Ni carbides in the Earth’s mantle: Evidence for a low Fe-Ni-C melt fraction in the deep mantle[J]. Earth Planet Sci Lett, 2014, 388: 211-221.
[95]McCammon C. Perovskite as a possible sink for ferric iron in the lower mantle[J]. Nature, 1997, 387(6634): 694-696.
[96]Kurnosov A, Marquardt H, Frost D J, Ballaran T B, Ziberna L. Evidence for a Fe3+-rich pyrolitic lower mantle from (Al, Fe)-bearing bridgmanite elasticity data[J]. Nature, 2017, 543(7646): 543-546.
[97]O’neill H S C, Wall V J. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the earth’s upper mantle[J]. J Petrol, 1987, 28(6): 1169-1191.
[98]Shim S H, Grocholski B, Ye Y, Alp E E, Xu S, Morgan D, Meng Y, Prakapenka V B. Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions[J]. Proc Nat Acad Sci, 2017, 114(25): 6468-6473.
[99]Wood B J, Bryndzia L T, Johnson K E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation[J]. Science, 1990, 248(4953): 337-345.
[100]Parkinson I J, Arculus R J. The redox state of subduction zones: Insights from arc-peridotites[J]. Chem Geol, 1999, 160(4): 409-423.
[101]Arculus R J. Aspects of magma genesis in arcs[J]. Lithos, 1994, 33(1-3): 189-208.
[102]Brounce M N, Kelley K A, Cottrell E. Variations in Fe3+/sigma Fe of Mariana arc basalts and mantle wedge fO2[J]. J Petrol, 2014, 55(12): 2513-2536.
[103]Waters L E, Lange R A. No effect of H2O degassing on the oxidation state of magmatic liquids[J]. Earth Planet Sci Lett, 2016, 447: 48-59.
[104]Kelley K A, Plank T, Newman S, Stolper E M, Grove T L, Parman S, Hauri E H. Mantle melting as a function of water content beneath the Mariana Arc[J]. J Petrol, 2010, 51(8): 1711-1738.
[105]Plank T, Kelley K A, Zimmer M M, Hauri E H, Wallace P J. Why do mafic arc magmas contain ~ 4 wt% water on average?[J]. Earth Planet Sci Lett, 2013, 364: 168-179.
[106]Straub S M, Layne G D. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones[J]. Geochim Cosmochim Acta, 2003, 67(21): 4179-4203.
[107]Jenner F E, O’neill H S C, Arculus R J, Mavrogenes J A. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu[J]. J Petrol, 2010, 51(12): 2445-2464.
[108]Lécuyer C, Ricard Y. Long-term fluxes and budget of ferric iron: Implication for the redox states of the Earth’s mantle and atmosphere[J]. Earth Planet Sci Lett, 1999, 165(2): 197-211.
[109]Berndt M E, Allen D E, Seyfried W E. Reduction of CO2 during serpentinization of olivine at 300 ℃ and 500 bar[J]. Geology, 1996, 24(4): 351-354.
[110]Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation[J]. Earth Planet Sci Lett, 1998, 163(1-4): 361-379.
[111]Grove T L, Till C B, Krawczynski M J. The role of H2O in subduction zone magmatism[J]. Ann Rev Earth Planet Sci, 2012, 40(1): 413-439.
[112]Frost B R, Ballhaus C. Comment on “Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA”[J]. Geochim Cosmochim Acta, 1998, 62(2): 329-331.
[113]Huang R F, Sun W D, Liu J Z, Ding X, Peng S B, Zhan W H. The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures[J]. Sci Rep, 2016, 6(1): 33821.
[114]Huang R F, Sun W D, Zhan W H, Ding X, Zhu J H, Liu J Q. Influence of temperature, pressure, and fluid salinity on the distribution of chlorine into serpentine minerals[J]. J Asian Earth Sci, 2017, 145(A): 101-110.
[115]Kessel R, Schmidt M W, Ulmer P, Pettke T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth[J]. Nature, 2005, 437(7059): 724-727.
[116]Manning C E. The chemistry of subduction-zone fluids[J]. Earth Planet Sci Lett, 2004, 223(1/2): 1-16.
[117]Jenkyns H C. Geochemistry of oceanic anoxic events[J]. Geochem Geophys Geosyst, 2010, 11(3): Q03004.
[118]Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade?[J]. Earth Sci Rev, 2003, 61(1/2): 149-179.
[119]Song S G, Su L, Niu Y L, Lai Y, Zhang L F. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge[J]. Geochim Cosmochim Acta, 2009, 73(6): 1737-1754.
[120]Ishihara S. The magnetite-series and ilmenite-series granitic rocks[J]. Min Geol, 1977, 27(145): 293-305.
[121]Kasting J F, Eggler D H, Raeburn S P. Mantle redox evolution and the oxidation state of the Archean atmosphere[J]. J Geol, 1993, 101(2): 245-257.
[122]Kump L R, Seyfried W E. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers[J]. Earth Planet Sci Lett, 2005, 235(3): 654-662.
[123]Kump L R, Barley M E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5? billion years ago [J]. Nature, 2007, 448(7157): 1033-1036.
[124]Gaillard F, Scaillet B, Arndt N T. Atmospheric oxygenation caused by a change in volcanic degassing pressure[J]. Nature, 2011, 478(7368): 229-232.
[125]Dasgupta R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time[J]. Rev Mineral Geochem, 2013, 75(1): 183-229.
[126]Evans K A, Elburg M A, Kamenetsky V S. Oxidation state of subarc mantle[J]. Geology, 2012, 40(9): 783-786.
[127]Hazen R M, Downs R T, Kah L, Sverjensky D. Carbon mineral evolution[J]. Rev Mineral Geochem, 2013, 75(1): 79-107.
[128]Tse J S, Holzapfel W B. Equation of state for diamond in wide ranges of pressure and temperature[J]. J Appl Phys, 2008, 104(4): 043525.
[129]Dziewonski A M, Anderson D L. Preliminary reference earth model[J]. Phys Earth Planet Interiors, 1981, 25(4): 297-356.
[130]Thompson J F H, Sillitoe R H, Baker T, Lang J R, Mortensen J K. Intrusion-related gold deposits associated with tungsten-tin provinces[J]. Mineral Deposita, 1999, 34(4): 323-334.
[131]Blevin P L, Chappell B W. Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia: The metallogeny of I- and S-type granites[J]. Econ Geol Bull Soc Econ Geol, 1995, 90(6): 1604-1619.
[132]Blevin P L, Chappell B W. The role of magma sources, oxidation-states and fractionation in determing the granite metallogeny of eastern Australia[J]. Earth Environ Sci Trans Roy Soc Edinb, 1992, 83(1/2): 305-316.
[133]Ballard J R, Palin J M, Campbell I H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile[J]. Contrib Mineral Petrol, 2002, 144(3): 347-364.
[134]Sillitoe R H. Porphyry copper systems[J]. Econ Geol, 2010, 105(1): 3-41.
[135]Zhang C C, Sun W D, Wang J T, Zhang L P, Sun S J, Wu K. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China[J]. Geochim Cosmochim Acta, 2017, 206: 343-363.
[136]Sun W D, Wang J T, Zhang L P, Zhang C C, Li H, Ling M X, Ding X, Li C Y, Liang H Y. The formation of porphyry copper deposits[J]. Acta Geochim, 2017, 36(1): 9-15.
[137]Sun W D, Liang H Y, Ling M X, Zhan M Z, Ding X, Zhang H, Yang X Y, Li Y L, Ireland T R, Wei Q R, Fan W M. The link between reduced porphyry copper deposits and oxidized magmas[J]. Geochim Cosmochim Acta, 2013, 103: 263-275.
[138]Sun W D, Huang R F, Li H, Hu Y B, Zhang C C, Sun S J, Zhang L P, Ding X, Li C Y, Zartman R E. Porphyry deposits and oxidized magmas[J]. Ore Geol Rev, 2015, 65: 97-131.
[139]Jugo P J, Wilke M, Botcharnikov R E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity[J]. Geochim Cosmochim Acta, 2010, 74(20): 5926-5938.
[140]Jugo P J, Luth R W, Richards J P. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts[J]. Geochim Cosmochim Acta, 2005, 69(2): 497-503.
[141]Jugo P J. Sulfur content at sulfide saturation in oxidized magmas[J]. Geology, 2009, 37(5): 415-418.
[142]Mavrogenes J A, O’neill H S C. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas[J]. Geochim Cosmochim Acta, 1999, 63(7/8): 1173-1180.
[143]Sillitoe R H. Why no porphyry copper deposits in Japan and South Korea?[J]. Resour Geol, 2018, 68(2): 107-125.
[144]Watanabe Y, Sato R, Sulaksono A. Role of potassic alteration for porphyry Cu mineralization: Implication for the absence of porphyry Cu deposits in Japan[J]. Resour Geol, 2018, 68(2): 195-207.
[145]Sun W D, Zhang H, Ling M X, Ding X, Chung S L, Zhou J B, Yang X Y, Fan W M. The genetic association of adakites and Cu-Au ore deposits[J]. Int Geol Rev, 2011, 53(5/6): 691-703.
[146]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665.
[147]Chung S L, Liu D, Ji J, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1024.
[148]Wang Q, Xu J F, Jian P, Bao Z W, Zhao Z H, Li C F, Xiong X L, Ma J L. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization [J]. J Petrol, 2006, 47(1): 119-144.
[149]Guo F, Nakamuru E, Fan W M, Kobayoshi K, Li C W. Generation of Palaeocene adakitic andesites by magma mixing; Yanji area, NE China[J]. J Petrol, 2007, 48(4): 661-692.
[150]Ma Q, Zheng J P, Xu Y G, Griffin W L, Zhang R S. Are continental “adakites” derived from thickened or foundered lower crust?[J]. Earth Planet Sci Lett, 2015, 419: 125-133.
[151]Rudnick R, Gao S. Composition of the continental crust[J]. Treatise Geochem, 2003, 3: 1-64.
[152]McDonough W F, Sun S-s. The composition of the Earth[J]. Chem Geol, 1995, 120(3/4): 223-253.
[153]Lee C T A, Luffi P, Chin E J, Bouchet R, Dasgupta R, Morton D M, Le Roux V, Yin Q Z, Jin D. Copper systematics in arc magmas and implications for crust-mantle differentiation[J]. Science, 2012, 336(6077): 64-68.
[154]Cooke D R, Hollings P, Walsh J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Econ Geol, 2005, 100(5): 801-818.
[155]Sun W D, Ling M X, Yang X Y, Fan W M, Ding X, Liang H Y. Ridge subduction and porphyry copper-gold mineralization: An overview[J]. Sci China Earth Sci, 2010, 53(4): 475-484.
[156]Zhang L P, Hu Y B, Liang J L, Ireland T, Chen Y L, Zhang R Q, Sun S J, Sun W D. Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications[J]. Acta Geochim, 2017, 36(2): 132-150.
[157]Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W D. Cretaceous ridge subduction along the lower Yangtse River Belt, eastern China[J]. Econ Geol, 2009, 104(2): 303-321.
[158]Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr Sect A, 1976, 32(5): 751-767.
[159]?temprok M. Solubility of tin, tungsten and molybdenum oxides in felsic magmas[J]. Mineral Deposita, 1990, 25(3): 205-212.
[160]Taylor J R, Wall V J. The behavior of tin in granitoid magmas[J]. Econ Geol, 1992, 87(2): 403-420.
[161]Linnen R L, Pichavant M, Holtz F, Burgess S. The effect of ?O2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 ℃ and 2 kbar[J]. Geochim Cosmochim Acta, 1995, 59(8): 1579-1588.
[162]Linnen R L, Pichavant M, Holtz F. The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts[J]. Geochim Cosmochim Acta, 1996, 60(24): 4965-4976.
[163]Linnen R L, Cuney M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization[J]. Geol Assoc Can Short Course Notes, 2005, 17: 45-68.
[164]Farges F, Linnen R L, Brown Jr G E. Redox and speciation of tin in hydrous silicate glasses: A comparison with Nb, Ta, Mo and W[J]. Can Mineral, 2006, 44(3): 795-810.
[165]Sato K. Sedimentary crust and metallogeny of granitoid affinity: Implications from the geotectonic histories of the circum-Japan sea region, central Andes and southeastern Australia[J]. Resour Geol, 2012, 62(4): 329-351.
[166]Chen Y X, Li H, Sun W D, Ireland T, Tian X F, Hu Y B, Yang W B, Chen C, Xu D R. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn mineralization and tectonic evolution[J]. Lithos, 2016, 266/267: 435-452.
[167]汪方跃. 华南晚中生代岩浆成矿与太平洋俯冲[D]. 北京: 中国科学院研究生院, 2010.
Wang Fang-yue. Late Mesozoic magmatic mineralization and Pacific subduction in South China[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010 (in Chinese with English abstract).
[168]郭佳. 华南右江盆地锡成矿事件与花岗岩锡成矿能力——以个旧和大厂锡多金属矿区为例[D]. 广州: 中国科学院广州地球化学研究所, 2019.
Guo Jia. Tin mineralization event and ability of tin metallogenic in Youjiang Basin, South China: A case study of Gejiu and Dachang Tin polymetallic mine area[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,2019 (in Chinese with English abstract).
[169]Zhang L P, Zhang R Q, Wu K, Chen Y X, Li C Y, Hu Y B, He J J, Liang J L, Sun W D. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W-Sn deposit, South China: Constraints from zircon and cassiterite U-Pb geochronology and whole-rock geochemistry[J]. Ore Geol Rev, 2018, 96: 115-129.
[170]Gardiner N J, Hawkesworth C J, Robb L J, Whitehouse M J, Roberts N M W, Kirkland C L, Evans N J. Contrasting granite metallogeny through the zircon record: A case study from Myanmar[J]. Sci Rep, 2017, 7(1): 748.
[171]Hong W, Cooke D R, Huston D L, Maas R, Meffre S, Thompson J, Zhang L J, Fox N. Geochronological, geochemical and Pb isotopic compositions of Tasmanian granites (southeast Australia): Controls on petrogenesis, geodynamic evolution and tin mineralisation[J]. Gondw Res, 2017, 46: 124-140.
[172]Ishihara S. The granitoid series and mineralization[J]. Econ Geol, 1981, 75: 458-484.
[173]Lehmann B. Metallogeny of tin; magmatic differentiation versus geochemical heritage[J]. Econ Geol, 1982, 77(1): 50-59.
[174]Cuney M. Felsic magmatism and uranium deposits[J]. Bull Soc Geol Fr, 2014, 185(2): 75-92.
[175]Langmuir D. Uranium solution-mineral equilibria at low-temperatures with application to sedimentary ore-deposits[J]. Geochim Cosmochim Acta, 1978, 42(6): 547-569.
[176]Yang X Y, Ling M X, Sun W D, Luo X D, Lai X D, Liu C Y, Miao J Y, Sun W. The genesis of sandstone-type uranium deposits in the Ordos Basin, NW China: Constraints provided by fluid inclusions and stable isotopes[J]. Int Geol Rev, 2009, 51(5): 422-455.
[177]黄世杰. 层间氧化带砂岩型铀矿的形成条件及找矿判据[J]. 铀矿地质, 1994, 10(1): 6-13.
Huang Shi-jie. Formation condition and prospecting criteria of sandstone-type uranium deposits[J]. Uran Geol, 1994, 10(1): 6-13 (in Chinese with English abstract).
[178]Quan Z. Geological characteristics and genetics of the Shihongtan sandstone-type uranium deposit, Xinjiang[J]. Geol Rev, 2002, 48(4): 430-436.
[179]黄世杰. 我国特大、超大型砂岩型铀矿形成条件探讨[J]. 铀矿地质, 2018, 34(3): 129-137.
Huang Shi-jie. Discussion on the forming condition of ultra-large and super large sandstone type uranium deposit[J]. Uran Geol, 2018, 34(3): 129-137 (

相似文献/References:

[1]王锦团,张 乐,任钟元*,等.气体混合炉中氧逸度控制[J].地球化学,2016,45(05):475.
 WANG Jin-tuan,ZHANG Le,REN Zhong-yuan* and XIONG Xiao-lin.Oxygen fugacity buffering in a gas-mixing furnace[J].Geochimica,2016,45(01):475.
[2]李 洁,钟军伟,于 洋,等.赣南西华山花岗岩的云母成分特征及其对岩浆演化与成矿过程的指示[J].地球化学,2013,42(05):393.
 LI Jie,ZHONG Jun-wei,YU Yang and HUANG Xiao-long*.Insights on magmatism and mineralization from micas in the Xihuashan granite, Jiangxi Province, South China[J].Geochimica,2013,42(01):393.

备注/Memo

收稿日期(Received): 2019-06-04; 改回日期(Revised): 2019-11-09; 接受日期(Accepted): 2019-11-29
基金项目: 国家重点研发计划(2016YFC0600408)、青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2017ASKJ02)、泰山学者基金(ts201712075)和青岛海洋科学与技术国家实验室“鳌山人才”卓越科学家计划项目(2017ASTCP-OS07)
作者简介: 孙卫东(1966-), 男, 研究员, 主要从事海洋地质研究工作。
* 通讯作者(Corresponding author): SUN Wei-dong, E-mail: weidongsun@qdio.ac.cn; Tel: +86-532-82893368

更新日期/Last Update: 2020-02-20