PDF下载 分享
[1]沈忱忱,卢 鸿,郝爱胜,等.模拟实验中正庚烷与甲苯的TSR行为差异[J].地球化学,2017,46(02):168-177.
 SHEN Chen-chen,LU Hong,HAO Ai-sheng,et al.Differences in TSR behavior between n-heptane and toluene in simulation experiments[J].Geochimica,2017,46(02):168-177.



[1] Cai C F, Worden R H, Bottrell S H, Wang L S, Yang C C. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China [J]. Chem Geol, 2003, 202(1): 39–57.
[2] Cai C F, Xie Z Y, Worden R H, Hu G Y, Wang L S, He H. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: Towards prediction of fatal H2S concentrations [J]. Mar Pet Geol, 2004, 21(10): 1265–1279.
[3] 张水昌, 朱光有, 梁英波. 四川盆地普光大型气田H2S及优质储层形成机理探讨[J]. 地质论评, 2006, 52(2): 230–235.
Zhang Shui-chang, Zhu Guang-you, Liang Ying-bo. Probe in to formation mechanism of H2S and high-quality reservoirs of Puguang Large Gas Field in Sichuan Basin [J]. Geol Rev, 2006, 52(2): 230–235 (in Chinese with English abstract).
[4] 朱光有, 张水昌, 梁英波, 戴金星, 李剑. 川东北地区飞仙关组高含H2S天然气TSR成因的同位素证据[J]. 中国科学(D 辑), 2005, 35(11): 1037–1046.
Zhu Guangyou, Zhang Shuichang, Liang Yingbo, Dai Jinxing, Li Jian. Evidence of isotope about TSR factor in the northeast of Sichuan basin whIH contain H2S highly [J]. Sci China (D), 2005, 35(11): 1037–1046 (in Chinese).
[5] 朱光有, 张水昌, 梁英波, 戴金星. 四川盆地H2S的硫同位素组成及其成因探讨[J]. 地球化学, 2006, 35(4): 333–345.
Zhu Guang-you, Zhang Shui-chang, Liang Ying-bo, Dai Jin-xing. Stable sulfur isotopic composition of hydrogen sulfide and its genesis in Sichuan Basin [J]. Geochimica, 2006, 35(4): 333–345 (in Chinese with English abstract).
[6] Liu Q Y, Worden R H, Jin Z J, LIU W H, Li J, Gao B, Zhang D W, Hu A P, Yang C. TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the Eastern Sichuan Basin, China [J]. Geo-chim Cosmochim Acta, 2013, 100(1): 96–115.
[7] Hunt M J. Petroleum Geochemistry and Geology [M]. [S.l.]: WH Freeman and company, 1979.
[8] Behar F, Lorant F, Budzinski H, Desavis E. Thermal stability of alkylaromatics in natural systems: Kinetics of thermal de-composition of dodecylbenzene [J]. Energ Fuel, 2002, 16(4): 831–841.
[9] Tissot B P, Welte D H. Petroleum Formation and Occurrence [M]. Berlin: Springer-Verlag, 2013: 1–702.
[10] Jarvie D M, Hill R J, Ruble T E, Pollastro R M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment [J]. AAPG Bulletin, 2007, 91(4): 475–499.
[11] Tang Y C, Huang Y S, Ellis G S, Wang Y, Kralert P G, Gillaizeau B, Ma Q S, Hwang R. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil [J]. Geochim Cosmochim Acta, 2005, 69(18): 4505–4520.
[12] Galimov E M. Isotope organic geochemistry [J]. Org Geochem, 2006, 37(10): 1200–1262.
[13] Tian H, Xiao X M, Wilkins R W T, Li X Q, Gan H J. Gas sources of the YN2 gas pool in the Tarim Basin — Evidence from gas generation and methane carbon isotope fractionation kinetics of source rocks and crude oils [J]. Mar Pet Geol, 2007, 24(1): 29–41.
[14] Tian H, Xiao X M, Wilkins R W T, Tang Y C. An experimental comparison of gas generation from three oil fractions: Im-plications for the chemical and stable carbon isotopic signa-tures of oil cracking gas [J]. Org Geochem, 2012, 46(1): 96–112.
[15] Krouse H R, Viau C A, Eliuk L S, Ueda A, Halas S. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs [J]. Nature, 1988, 333(6172): 415–419.
[16] Worden R H, Smalley P C, Oxtoby N H. Gas souring by thermochemical sulfate reduction at 140 oC [J]. AAPG Bulletin, 1995, 79(6): 854–863.
[17] Worden R H, Smalley P C, Oxtoby N H. The effects of ther-mochemical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate gas reservoirs [J]. Geochim Cosmochim Acta, 1996, 60(20): 3925–3931.
[18] Worden R H, Smalley P C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi [J]. Chem Geol, 1996, 133(1): 157–171.
[19] Worden R H, Smalley P C, Cross M M. The influence of rock fabric and mineralogy on thermochemical sulfate reduction: Khuff Formation, Abu Dhabi [J]. J Sediment Res, 2000, 70(5): 1210–1221.
[20] Zhang T W, Amrani A, Ellis G S, Ma Q S, Tang Y C. Experi-mental investigation on thermochemical sulfate reduction by H2S initiation [J]. Geochim Cosmochim Acta, 2008, 72(14): 3518–3530.
[21] Ma Q, Ellis G S, Amrani A, Zhang T W, Tang Y C. Theoretical study on the reactivity of sulfate species with hydrocarbons [J]. Geochim Cosmochim Acta, 2008, 72(18): 4565–4576.
[22] Lu H, Greenwood P, Chen T S, Liu J Z, Peng P A. The role of metal sulfates in thermochemical sulfate reduction (TSR) of hydrocarbons: Insight from the yields and stable carbon iso-topes of gas products [J]. Org Geochem, 2011, 42(6): 700–706.
[23] 张水昌, 帅燕华, 何坤, 米敬奎. 硫酸盐热化学还原作用的启动机制研究[J]. 岩石学报, 2012, 28(3): 739–748.
Zhang Shui-chang, Shuai Yan-hua, He Kun, Mi Jing-kui. Research on the initiation mechanism of thermochemical sulfate reduction (TSR) [J]. Acta Petrol Sinica, 2012, 28(3): 739–748 (in Chinese with English abstract).
[24] Rooney M A. Carbon isotopic evidence for the accelerated destruction of light hydrocarbons by thermochemical sulfate reduction[C]//Abstract of the NSERC Thermochemical Sul-phate Reduction (TSR) and Bacterial Sulphate Reduction (BSR) Workshop. 1996.
[25] Manzano B K, Fowler M G, Machel H G. The influence of thermochemical sulphate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau river area, Alberta, Canada [J]. Org Geochem, 1997, 27(7): 507–521.
[26] Bildstein O, Worden R H, Brosse E. Assessment of anhydrite dissolution as the rate-limiting step during thermochemical sulfate reduction [J]. Chem Geol, 2001, 176(1): 173–189.
[27] Pan C C, Yu L P, Liu J Z, Fu J M. Chemical and carbon isotopic fractionations of gaseous hydrocarbons during abiogenic oxidation [J]. Earth Planet Sci Lett, 2006, 246(1): 70–89.
[28] Wang Q T, Lu H, Shen C C, Liu J Z, Peng P A, Hsu C S. Impact of inorganically bound sulfur on late shale gas generation [J]. Energ Fuel, 2014, 28(2): 785–793.
[29] 袁涛. 正庚烷, 异辛烷热解和预混火焰的实验及动力学模型研究[D]. 合肥: 中国科学技术大学, 2010.
Yuan Tao. Experimental and Kinetic Modeling studies on pyrolysis and premixed flames of n-heptane and iso-octane [D]. Hefei: University of Science and Technology of China, 2010 (in Chinese with English abstract)
[30] Wang Q T, Lu H, Greenwood P, Shen C C, Liu J Z, Peng P A. Gas evolution during kerogen pyrolysis of Estonian Kukersite shale in confined gold tube system [J]. Org Geochem, 2013, 65(1): 74–82.
[31] 蔡春芳, 李宏涛. 沉积盆地热化学硫酸盐还原作用评述[J]. 地球科学进展, 2005, 20(10): 1100–1105.
Cai Chun-fang, Li Hong-tao. Thermochemical sulfate reduc-tion in sedimentary basins: A review [J]. Adv Earth Sci, 2005, 20(10): 1100–1105 (in Chinese with English abstract).
[32] Lewan M D. Experiments on the role of water in petroleum formation [J]. Geochim Cosmochim Acta, 1997, 61(17): 3691–3723.
[33] Lu H, Greenwood P, Chen T S, Liu J Z, Peng P A. The separate production of H2S from the thermal reaction of hydrocarbons with magnesium sulfate and sulfur: implications for thermal sulfate reduction [J]. Appl Geochem, 2012, 27(1): 96–105.
[34] Zhang T, Ellis G S, Wang K S, Walters C C, Kelemen S R, Gillaizeau B, Tang Y C. Effect of hydrocarbon type on ther-mochemical sulfate reduction [J]. Org Geochem, 2007, 38(6): 897–910.
[35] 王惠, 杨海峰, 冉新权, 文振翼, 史启祯. 甲苯热解机理的AM1研究(Ⅰ)热力学分析[J]. 无机化学学报, 2001, 17(4): 538–544.
Wang Hui, Yang Hai-feng, Ran Xin-quan, Wen Zhen-yi, Shi Qi-zhen. AM1 thermodynamic research of the pyrolysis me-chanism of toluene (I) [J]. Chinese J Inorg Chem, 2001, 17(4): 538–544 (in Chinese with English abstract).
[36] Zhang L D, Cai J H, Zhang T C, Qi F. Kinetic modeling study of toluene pyrolysis at low pressure [J]. Combust Flame, 2010, 157(9): 1686–1697.
[37] Leininger J P, Lorant F, Minot C, Behar F. Mechanisms of 1-methylnaphthalene pyrolysis in a batch reactor [J]. Energ Fuel, 2006, 20(6): 2518–2530.
[38] Lorant F, Behar F, Vandenbroucke M. Methane generation from methylated aromatics: Kinetic study and carbon isotope modeling [J]. Energ Fuel, 2000, 14(6): 1143–1155.
[39] 陈腾水. 硫酸盐热化学还原反应模拟实验研究[D]. 广州: 中国科学院广州地球化学研究所, 2009.
Chen Teng-shui. Studies of simulation experiments on ther-mochemical sulfate reduction [D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2009 (in Chinese with English abstract)
[40] Sassen R. Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation, and sulfate reduction in the deep Smackover Formation [J]. Org Geochem, 1988, 12(4): 351–361.
[41] Lu H, Chen T S, Liu J Z, Peng P A, Lu Z H, Ma Q L. Yields of H2S and gaseous hydrocarbons in gold tube experiments si-mulating thermochemical sulfate reduction reactions between MgSO4 and petroleum fractions [J]. Org Geochem, 2010, 41(11): 1189–1197.
[42] Zhang T, Ellis G S, Walters C C, Kelemen S R, Wang K S, Tang Y C. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments [J]. Org Geochem, 2008, 39(3): 308–328.
[43] Toland W G. Oxidation of organic compounds with aqueous sulfate [J]. J Am Chem Soc, 1960, 82(8): 1911–1916.
[44] Cai C F, Zhang C M, He H, Tang Y J. Carbon isotope fractio-nation during methane-dominated TSR in East Sichuan Basin gas fields, China: A review [J]. Mar Pet Geol, 2013, 48(1): 100–110.
[45] 岳长涛, 李术元, 徐明, 张永翰, 钟宁宁. 正十六烷与硫酸镁热氧化还原反应模拟实验研究[J]. 地球化学, 2011, 40(2): 171–178.
Yue Chang-tao, Li Shu-yuan, Xu Ming, Zhang Yong-han, Zhong Ning-ning. Simulation experiments on the thermo-chemical sulfate reduction system of n-hexadecane and magnesium sulfate [J]. Geochimica, 2011, 40(2): 171-178 (in Chinese with English abstract).
[46] Yue C T, Li S Y, Ding K L, Zhong N N. Thermodynamics and kinetics of reactions between C1-C3 hydrocarbons and calcium sulfate in deep carbonate reservoirs [J]. Geochem J, 2006, 40(1): 87–94.
[47] Heydari E. The role of burial diagenesis in hydrocarbon de-struction and H2S accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi [J]. AAPG Bulletin, 1997, 81(1): 26–45.
[48] 杜春国, 郝芳, 邹华耀, 张俊, 朱扬明, 王存武. 热化学硫酸盐还原作用对碳酸盐岩气藏的化学改造——以川东北地区长兴组-飞仙关组气藏为例[J]. 地质学报, 2007, 81(1): 119–126.
Du Chun-guo, Hao Fang, Zou Hua-yao, Zhang Jun, Zhu Yang-ming, Wang Cun-wu. Effect of thermochemical sulfate reduction upon carbonate gas reservoir-an example from the northeast Sichuan Basin [J]. Acta Geol Sinica, 2007, 81(1): 119–126 (in Chinese with English abstract).
[49] Connan J, Lacrampe-Couloume G, Magot M. Origin of gases in reservoirs [C]//International Gas Research Conference. Government Insttutes Inc, 1995: 21–61.
[50] Cai C F, Worden R H, Wang Q H, Xiang T S, Zhu J Q, Chu X L. Chemical and isotopic evidence for secondary alteration of natural gases in the Hetianhe Field, Bachu Uplift of the Tarim Basin [J]. Org Geochem, 2002, 33(12): 1415–1427.


收稿日期(Received): 2016-06-03; 改回日期(Revised): 2016-07-27; 接受日期(Accepted): 2016-10-08
基金项目: 国家自然科学基金(41602130; 41173053; 41473045)
作者简介: 沈忱忱(1991–), 男, 博士研究生, 有机地球化学专业。E-mail: scccool@foxmail.com
* 通讯作者(Corresponding author): WANG Qing-tao, E-mail: wangqingtao@gig.ac.cn, Tel: +86-20-85297345

更新日期/Last Update: 2017-03-30