PDF下载 分享
[1]韦思业,宋建中*,彭平安,等.来源于生物质和煤燃烧产生的soot和charcoal的Py-GC/MS研究[J].地球化学,2017,46(03):240-251.
 WEI Si-ye,SONG Jian-zhong*,PENG Ping-an and YU Chi-ling.Py-GC/MS study on the characteristics of soot and charcoal derived from biomass materials and coal[J].Geochimica,2017,46(03):240-251.
点击复制

来源于生物质和煤燃烧产生的soot和charcoal的Py-GC/MS研究

参考文献/References:

[1] 韩永明, 曹军骥. 环境中的黑碳及其全球生物地球化学循环[J]. 海洋地质与第四纪地质, 2005, 25(1): 125–132.
Han Yong-ming, Cao Jun-ji. Black carbon in the environments and its global biogeochemical cycle[J]. Mar Geol Quatern Geol, 2005, 25(1): 125–132 (in Chinese with English abstract).
[2] Purakayastha T J, Kumari S, Pathak H. Characterisation, stability, and microbial effects of four biochars produced from crop residues[J]. Geoderma, 2015, 239-240: 293–303.
[3] Song J Z, Peng P A. Characterisation of black carbon materials by pyrolysis-gas chromatography-mass spectrometry[J]. J Anal Appl Pyrol, 2010, 87(1): 129–137.
[4] Masiello C A. New directions in black carbon organic geochemistry[J]. Mar Chem, 2004, 92(1-4): 201–213.
[5] Brewer C E, Schmidt-Rohr K, Satrio J A, Brown, R C. Characterization of biochar from fast pyrolysis and gasification systems[J]. Environ Prog Sustain, 2009, 28(3): 386–396.
[6] Hammes K, Smernik R J, Skjemstad J O, Schmidt, M W I. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and C-13 NMR spectroscopy[J]. Appl Geochem, 2008, 23(8): 2113–2122.
[7] KeiluweitT M, Nico P S, Johnson M G, Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (Biochar)[J]. Environ Sci Technol, 2010, 44(4): 1247–1253.
[8] De la Rosa J M, Knicker H, Lopez-Capel E, Manning, D A C, Gonzalez-Perez F J. Direct detection of black carbon in soils by Py-GC/MS, carbon-13 NMR spectroscopy and thermogravimetric techniques[J]. Soil Sci Soc Am J, 2008, 72(1): 258–267.
[9] Kaal J, Brodowski S, Baldock J A, Nierop K G J, Cortizas A M. Characterisation of aged black carbon using pyrolysis- GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross-polarisation C-13 nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method[J]. Org Geochem, 2008, 39(10): 1415–1426.
[10] Lin J H. Identification of the surface characteristics of carbon blacks by pyrolysis GC-MASS[J]. Carbon, 2002, 40(2): 183– 187.
[11] Ross A B, Junyapoon S, Jones J M, Williams A, Bartle K D. A study of different soots using pyrolysis-GC-MS and comparison with solvent extractable material[J]. J Anal Appl Pyrol, 2005, 74(1/2): 494–501.
[12] Rombola A G, Marisi G, Torri C, Fabbri D, Buscaroli A, Ghidotti M, Hornung A. Relationships between Chemical Characteristics and Phytotoxicity of Biochar from Poultry Litter Pyrolysis[J]. J Agr Food Chem, 2015, 63(30): 6660– 6667.
[13] 黄卫, 毕新慧, 张国华, 黄渤, 林钦浩, 王新明, 盛国英, 傅家谟. 民用蜂窝煤燃烧排放颗粒物的化学组成和稳定碳同位素特征[J]. 地球化学, 2014, 43(6): 640–646.
Huang Wei, Bi Xin-hui, Zhang Guo-hua, Huang Bo, Lin Qin-hao, Wang Xin-ming, Sheng Guo-ying, Fu Jia-mo. The chemical composition and stable carbon isotope characteristics of particulate matter from the residential honeycomb coal briquettes combustion[J]. Geochimica, 2014, 43(6): 640–646 (in Chinese with English abstract).
[14] 杨冰玉, 黄星星, 郑桉, 刘碧莲, 吴水平. 厦门城区大气颗粒物PM10中有机酸源谱特征分析[J]. 环境科学, 2013, 34(1): 8–14.
Yang Bing-yu, Huang Xing-xing, Zheng An, Liu Bi-lian, Wu Shui-ping. Compositions of organic acids in PM10 emission sources in Xiamen urban atmosphere[J]. Environ Sci, 2013, 34(1): 8–14 (in Chinese with English abstract).
[15] Jeong C Y, Dodla S K, Wang J J. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products[J]. Chemosphere, 2016, 142: 4–13.
[16] Fushimi A, Tanabe K, Hasegawa S, Kobayashi S. Investigation of characterization method for nanoparticles in roadside atmosphere by thermal desorption-gas chromatography/ mass spectrometry using a pyrolyzer[J]. Sci Total Environ, 2007, 386(1-3): 83–92.
[17] Kaal J, Cortizas A M, Reyes O, Solino M. Molecular characterization of Ulex europaeus biochar obtained from laboratory heat treatment experiments - A pyrolysis-GC/MS study[J]. J Anal Appl Pyrol, 2012, 95: 205–12.
[18] Kaal J, Nierop K G J, Kraal P, Preston C M. A first step towards identification of tannin-derived black carbon: Conventional pyrolysis (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS) of charred condensed tannins[J]. Org Geochem, 2012, 47: 99–108.
[19] Kaal J, Cortizas A M, Nierop K G J. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon[J]. J Anal Appl Pyrol, 2009, 85(1/2): 408–416.
[20] Chen B L, Johnson E J, Chefetz B, Zhu L Z, Xing B S. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility [J]. Environ Sci Technol, 2005, 39(16): 6138–6146.
[21] Conti R, Rombola A G, Modelli A, Torri C, Fabbri D. Evaluation of the thermal and environmental stability of switchgrass biochars by Py-GC-MS[J]. J Anal Appl Pyrol, 2014, 110: 239–247.
[22] Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y M, Chen H, Yang L Y. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties[J]. Chem Eng J, 2014, 240: 574–578.
[23] Crombie K, Ma?ek O, Sohi S P, Brownsort P, Cross A. The effect of pyrolysis conditions on biochar stability as determined by three methods[J]. Global Change Biology Bioenergy, 2013, 5(2): 122–131.
[24] Zhao X C, Ouyang W, Hao F H, Lin C Y, Wang F L, Han S, Geng X J. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine[J]. Bioresour Technol, 2013, 147: 338-344.
[25] Wang S S, Gao B, Zimmerman A R, Li Y C, Ma L N, Harris W G, Migliaccio K W. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass[J]. Chemosphere, 2015, 134: 257–262.
[26] Kim P, Johnson A, Edmunds C W, Radosevich M, Vogt F, Rials T G, Labbe N. Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis[J]. Energ Fuel, 2011, 25(10): 4693–4703.
[27] Zhao L, Cao X D, Ma?ek O, Zimmerman A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J]. J Hazard Mater, 2013, 256-257: 1–9.

相似文献/References:

[1]韦思业,宋建中*,彭平安,等.不同温度制备生物炭的热解产物特征[J].地球化学,2019,48(05):511.[doi:10.19700/j.0379-1726.2019.05.008]
 WEI Si-ye,SONG Jian-zhong*,PENG Ping-an,et al.Characterization of pyrolysis products in biochar prepared at different temperatures[J].Geochimica,2019,48(03):511.[doi:10.19700/j.0379-1726.2019.05.008]
[2]刘晓强、,李美俊、*,唐友军,等.有机质中三联苯成熟度参数及其化学机理: 基于地球化学数据和量子化学计算[J].地球化学,2020,49(02):218.[doi:10.19700/j.0379-1726.2020.01.012]
 LIU Xiao-Qiang,LI Mei-jun*,TANG You-jun,et al.Maturity indicators and its mechanism of triphenyls in sedimentary organic matter: Based on geochemical data and quantum chemical calculation[J].Geochimica,2020,49(03):218.[doi:10.19700/j.0379-1726.2020.01.012]

备注/Memo

收稿日期(Received): 2016-09-23; 改回日期(Revised): 2016-11-23; 接受日期(Accepted): 2017-03-03
基金项目: 国家自然科学基金(41473104, 41390242)
作者简介: 韦思业(1987–), 男, 博士研究生, 环境科学专业。E-mail: wsyzyp@126.com
* 通讯作者(Corresponding author): SONG Jian-zhong, E-mail: songjzh@gig.ac.cn; Tel: +86-20-85291312

更新日期/Last Update: 2017-05-30