PDF下载 分享
[1]舒楚天,龙晓平*,王 强,等.藏南早侏罗世新特提斯洋俯冲过程中壳幔混合作用: 来自日喀则东嘎闪长质岩体的证据[J].地球化学,2018,47(05):478-490.[doi:10.19700/j.0379-1726.2018.05.003]
 SHU Chu-tian,LONG Xiao-ping*,WANG Qiang and YUAN Chao.Mixing of Early Jurassic crustal and mantle-derived magmas induced by subduction of the Neo-Tethyan Ocean: Evidence from the Dongga dioritic pluton, South Tibet[J].Geochimica,2018,47(05):478-490.[doi:10.19700/j.0379-1726.2018.05.003]
点击复制

藏南早侏罗世新特提斯洋俯冲过程中壳幔混合作用: 来自日喀则东嘎闪长质岩体的证据

参考文献/References:

[1] Taylor S R, McLennan S M. The Continental Crust: Its Com?position and Evolution [M]. Oxford: Blackwell, 1985: 312.
[2] Hawkesworth C, Kemp T. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution [J]. Chem Geol, 2006, 226: 144–162.
[3] Rudnick R L, Gao S. Composition of the continental crust [M] // Treatise on Geochemistry. Elsevier, 2003: 1–64.
[4] Allegre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Sch?rer U, Marcoux J, Burg J P, Armijo J G R, Gariepy C, Gopel C, Li T D, Xiao X C, Chang C F, Li G Q, Lin B Y, Teng J W, Wang N W, Chen G M, Han T L, Wang X B, Den W M, Sheng H B, Cao Y G, Zhou J, Qiu H R, Bao P S, Wang S C, Wang B X, Zhou Y X, Xu R H. Structure and evolution of the Himalaya-Tibet orogenic belt [J]. Nature, 1984, 307(5946): 17–22.
[5] Niu Y L, Zhao Z D, Zhu D C, Mo X X. Continental collision zones are primary sites for net continental crust growth — A testable hypothesis [J]. Earth Sci Rev, 2013, 127: 96–110.
[6] Hou Z Q, Duan L F, Lu Y J, Zheng Y C, Zhu D C, Yang Z M, Yang Z S, Wang B D, Pei Y R, Zhao Z D, McCuaig T C. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogeny [J]. Econ Geol, 2015, 110: 1541–1575.
[7] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogeny [J]. Annu Rev Earth Planet Sci, 2000, 28: 211–280.
[8] 潘桂棠, 王立全, 李荣社, 尹福光, 朱弟成. 多岛弧盆系构造模式: 认识大陆地质的关键[J]. 沉积与特提斯地质, 2012, 32(3): 1–20.
Pan Gui-tang, Wang Li-quan, Li Rong-she, Yin Fu-guang, Zhu Di-cheng. Tectonic model of archipelagic arc-basin systems: The key to the continental geology [J]. Sediment Geol Tethyan Geol, 2012, 32(3): 1–20 (in Chinese with English abstract).
[9] Zhu D C, Zhao Z D, Niu Y L, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth [J]. Earth Planet Sci Lett, 2011, 301(1–2): 241–255.
[10] Chung S-L, Chu M F, Ji J Q, O’Reilly S Y, Pearson N J, Liu D Y, Lee T Y, Lo C H. The nature and timing of crustal thickening in southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites [J]. Tectonophysics, 2009, 477(1): 36–48.
[11] Wang R Q, Qiu J S, Yu S B, Zhao J L. Crust-mantle interaction during early Jurassic subduction of Neo-Tethyan oceanic slab: Evidence from the Dongga gabbro-granite complex in the southern Lhasa subterrane, Tibet [J]. Lithos, 2017, 292–293: 262–277.
[12] 邱检生, 王睿强, 赵姣龙, 喻思斌. 冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示: 以日喀则东嘎岩体为例[J]. 岩石学报, 2015, 31(12): 3569–3580.
Qiu Jian-sheng, Wang Rui-qiang, Zhao Jiao-long, Yu Si-bin. Petrogenesis of the Early Jurassic gabbro-granite complex in the middle segment of the Gangdese belt and its implications for tectonic evolution of Neo-Tethys: A case study of the Dongga pluton in Xi’gaze [J]. Acta Petrol Sinica, 2015, 31(12): 3569–3580 (in Chinese with English abstract).
[13] Guo L S, Liu Y L, Liu S W, Cawood P A, Wang Z H, Liu H F. Petrogenesis of early to middle Jurassic granitoid rocks from the Gangdese belt, southern Tibet: Implications for early history of the Neo-Tethys [J]. Lithos, 2013, 179: 320–333.
[14] Xu B, Hou Z Q, Zheng Y C, Zhou Y, Zhou L M, Yang Y, Han Y W, Zhen G, Wu C D. Jurassic hornblende gabbros in Dongga, Eastern Gangdese, Tibet: Partial melting of mantle wedge and implications for crustal growth [J]. Acta Geol Sinica, 2017, 91(2): 545–564.
[15] Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Mo X X. Lhasa terrane in southern Tibet came from Australia [J]. Geology, 2011, 39(8): 727–730.
[16] 朱弟成, 赵志丹, 牛耀龄, 王青, Dilek Y, 董国臣, 莫宣学. 拉萨地体的起源和古生代构造演化[J]. 高校地质学报, 2012, 18(1): 1–15.
Zhu Di-cheng, Zhao Zhi-dan, Niu Yao-ling, Wang Qing, Dilek Y, Dong Guo-chen, Mo Xuan-xue. Origin and Paleozoic tectonic evolution of the Lhasa terrane [J]. Geol J Chin Univ, 2012, 18(1): 1–15 (in Chinese with English abstract).
[17] Chu M F, Chung S L, Song B, Liu D Y, O’Reilly S Y, Pearson N J, Ji J Q, Wen D R. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet [J]. Geology, 2006, 34(9): 745–748.
[18] Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet [J]. Chem Geol, 2009, 262: 229–245.
[19] Ji W Q, Wu F Y, Chung S L, Liu C Z. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet [J]. Sci China (D), 2009, 52(9): 849–871.
[20] Zhu D C, Wang Q, Zhao Z D, Chung S L, Cawood P A, Niu Y L, Liu S A, Wu F Y, Mo X X. Magmatic record of India-Asia collision [J]. Sci Rep, 2015, 5: 1–8.
[21] 莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135–148.
Mo Xuan-xue, Zhao Zhi-dan, Deng Jin-fu, Dong Guo-chen, Zhou Su, Guo Tie-ying, Zhang Shuang-quan, Wang Liang-liang. Response of volcanism to the India-Asian collision [J]. Earth Sci Front, 2013, 10(3): 135–148 (in Chinese with English abstract).
[22] Chen J S, Huang B C, Sun L S. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong group in the Lhasa block, China [J]. Tectonophysics, 2010, 489: 189–209.
[23] de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa I M, Luais B, Guillot S, Cosca M, Mascle G. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites [J]. Geology, 2000, 28(6): 487–490.
[24] Ding L, Kapp P, Wan X Q. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet [J]. Tectonics, 2005, 24: 1–18.
[25] Leech M L, Singh S, Jain A K, Klemperer S L, Manickavasagam R M. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya [J]. Earth Planet Sci Lett, 2005, 234(1–2): 83–97.
[26] Wu F Y, Ji W Q, Wang J G, Liu C Z, Chung S L, Clift P D. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision [J]. Am J Sci, 2014, 314(2): 548–579.
[27] 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521–533.
Pan Gui-tang, Mo Xuan-xue, Hou Zeng-qian, Zhu Di-cheng, Wang Li-quan, Li Guang-ming, Zhao Zhi-dan, Geng Quan-ru, Liao Zhong-li. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution [J]. Acta Petrol Sinica, 2006, 22(3): 521–533 (in Chinese with English abstract).
[28] Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Hou Z Q, Mo X X. The origin and pre-Cenozoic evolution of the Tibetan Plateau [J]. Gondwa Res, 2013, 23(4): 1429–1454.
[29] Zhu D C, Pan G T, Chung S L, Liao Z L, Wang L Q, Li G M. SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba formation, southern Gangdese, south Tibet [J]. Int Geol Rev, 2008, 50(5): 442–471.
[30] Zhu D C, Zhao Z D, Pan G T, Lee H Y, Kang Z Q, Liao Z L, Wang L Q, Li G M, Dong G C, Liu B. Early Cretaceous subduction-related adakite-like rocks of the Gangdese belt, southern tibet: Products of slab melting and subsequent melt-peridotite interaction? [J]. J Asian Earth Sci, 2009, 34(3): 298–309.
[31] 李皓扬, 钟孙霖, 王彦斌, 朱弟成, 杨进辉, 宋彪, 刘敦一, 吴福元. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石U-Pb年龄和Hf同位素证据[J]. 岩石学报, 2007, 23(2): 493–500.
Lee Hao-yang, Chung Sun-lin, Wang Yan-bin, Zhu Di-cheng, Yang Jin-hui, Song Biao, Liu Dun-yi, Wu Fu-yuan. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou Basin, southern Tibet: Evidence from zircon U-Pb dates and Hf isotopes [J]. Acta Petrol Sinica, 2007, 23(2): 493–500 (in Chinese with English abstract).
[32] Ma L, Wang Q, Wyman D A, Li Z X, Jiang Z Q, Yang J H, Gou G N, Guo H F. Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet [J]. Lithos, 2013, 175–176: 315–332.
[33] Ma L, Wang Q, Wyman D A, Jiang Z Q, Yang J H, Li Q L, Gou G N, Guo H F. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro [J]. Chem Geol, 2013, 349–350: 54–70.
[34] Zorpi M, Coulon C, Orsini J. Hybridization between felsic and mafic magmas in calc-alkaline granitoids — A case study in northern Sardinia, Italy [J]. Chem Geol, 1991, 92: 45–86.
[35] Li X H, Qi C S, Liu Y, Liang X R, Tu X L, Xie L W, Yang Y H. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze block: New constraints from Hf isotopes and Fe/Mn ratios [J]. Chin Sci Bull, 2005, 50(21): 2481–2486.
[36] 梁细荣, 韦刚健, 李献华, 刘颖. 多收集器等离子体质谱快速精确测定钕同位素比值[J]. 岩矿测试, 2002, 21(4): 247–251.
Liang Xi-rong, Wei Gang-jian, Li Xian-hua, Liu Ying. Rapid and precise measurement for 143Nd/144Nd isotopic ratios using a Multi-Collector Inductively Coupled Plasma Mass Spectro-meter [J]. Rock Miner Anal, 2002, 21(4): 247–251 (in Chinese with English abstract).
[37] 韦刚健, 梁细荣, 李献华, 刘颖. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成[J]. 地球化学, 2002, 31(3): 295–299.
Wei Gang-jian, Liang Xi-rong, Li Xian-hua, Liu Ying. Precise measurement of Sr isotopic composition of liquid and solid base using (LP)MC-ICPMS [J]. Geochimica, 2002, 31(3): 295–299 (in Chinese with English abstract).
[38] Steiger R H, Jager E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology [J]. Earth Planet Sci Lett, 1977, 36(3): 359–362.
[39] Lugmair G W, Marti K. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle [J]. Earth Planet Sci Lett, 1978, 39(3): 349–357.
[40] Miller R G, Onions R K. Source of precambrian chemical and clastic sediments [J]. Nature, 1985, 314(6009): 325–330.
[41] Goldstein S L, Onions R K, Hamilton P J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems [J]. Earth Planet Sci Lett, 1984, 70(2): 221–236.
[42] Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites [J]. Earth Planet Sci Lett, 1980, 50(1): 139–155.
[43] Arndt N T, Goldstein S L. Use and abuse of crust-formation ages [J]. Geology, 1987, 15: 893–895.
[44] Diwu C R, Sun Y, Guo A L, Wang H L, Liu X M. Crustal growth in the North China Craton at ~2.5 Ga: Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geo?chemistry of the Dengfeng complex [J]. Gondwa Res, 2011, 20(1): 149– 170.
[45] Yuan H L, Gao S, Dai M N, Zong C L, Gunther D, Fontaine G H, Liu X M, Diwu C R. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS [J]. Chem Geol, 2008, 247: 100–118.
[46] Ludwig K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel [M]. Berkeley Geochronology Centre Special Publication, 2003.
[47] S?derlund U, Patchett P J, Vervoort J D, Isachsen C E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of precambrian mafic intrusions [J]. Earth Planet Sci Lett, 2004, 219(3–4): 311–324.
[48] Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets [J]. Earth Planet Sci Lett, 2008, 273(1–2): 48–57.
[49] Griffin W L, Pearson N J, Belousova E, Jackson S E, Van Achterbergh E, O’Reilly S Y, Shee S R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites [J]. Geochim Cosmochim Acta, 2000, 64(1): 133–147.
[50] Griffin W L, Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu, X S, Zhou, X M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes [J]. Lithos, 2002, 61: 237–269.
[51] Hoskin P W, Schaltegger U. The composition of zircon and igneous and metamorphic Petrogenesis [J]. Rev Miner Geochem, 2003, 53(1): 27–62.
[52] Middlemost E A K. Naming materials in the magma/igneous rock system [J]. Earth Sci Rev, 1994, 37(3–4): 215–224.
[53] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids [J]. Geol Soc Am Bull, 1989, 101(5): 635–643.
[54] Sun S-s, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geol Soc London Spec Publ, 1989, 42: 313–345.
[55] Lee C-T A, Bachmann O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics [J]. Earth Planet Sci Lett, 2014, 393(3): 266–274.
[56] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust- mantle recycling [J]. J Petrol, 1995, 36(4): 891–931.
[57] Dessimoz M, Müntener O, Ulmer P. A case for hornblende dominated fractionation of arc magmas: The Chelan Complex (Washington Cascades) [J]. Contrib Mineral Petrol, 2011, 163: 567–589.
[58] Jagoutz O E, Burg J-P, Hussain S, Dawood H, Pettke T, Iizuka T, Maruyama S. Construction of the granitoid crust of an island arc part I: Geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan) [J]. Contrib Mineral Petrol, 2009, 158: 739–755.
[59] Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Woerner G, Volynets O N. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges [J]. Nature, 2001, 409: 500–504.
[60] Grove T L, Till C B, Krawczynski M J. The role of H2O in subduction zone magmatism [J]. Annu Rev Earth Planet Sci, 2012, 40: 413–439.
[61] Clynne M A. A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California [J]. J Petrol, 1999, 40: 105–132.
[62] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 1990, 347(6294): 662–665.
[63] Falloon T J, Danyushevsky L V. Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersa-turated conditions: Implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting [J]. J Petrol, 2000, 41: 257–283.
[64] Vervoort J D, Kemp A I S. Clarifying the zircon Hf isotope record of crust-mantle evolution [J]. Chem Geol, 2016, 425: 65–75.
[65] Langmuir C H, Vocke R D, Hanson G N, Hart S R. A general mixing equation with applications to Icelandic basalts [J]. Earth Planet Sci Lett, 1978, 37(3): 380–392.
[66] Cantagrel J-M, Didier J, Gourgaud A. Magma mixing: Origin of intermediate rocks and “enclaves” from volcanism to plutonism [J]. Phys Earth Planet Inter, 1984, 35(1–3): 63–76.
[67] Kemp A I S, Hawkesworth C J. Growth and differentiation of the continental crust from isotope studies of accessory minerals [M] // Holland H D, Twrekian K K. Treatise on Geochemistry. Elsevier, 2014: 379–421.

备注/Memo

收稿日期(Received): 2017-12-29; 改回日期(Revised): 2018-02-06; 接受日期(Accepted): 2018-02-12
基金项目: 国家自然科学基金(41522202)
作者简介: 舒楚天(1994–), 男, 硕士研究生, 岩石地球化学专业。E-mail: shuchutian15@mails.ucas.ac.cn
* 通讯作者(Corresponding author): LONG Xiao-ping, E-mail: longxp@nwu.edu.cn; Tel: +86-29-88302456

更新日期/Last Update: 2018-09-30