PDF下载 分享
[1]谭 威,韩润生*,王 雷,等.滇西北北衙超大型金多金属矿床铁质来源于玄武岩的新证据[J].地球化学,2018,47(05):541-553.[doi:10.19700/j.0379-1726.2018.05.007]
 TAN Wei,HAN Run-sheng*,WANG Lei,et al.Iron source of the Beiya porphyry-type Au-polymetallic deposit in Northwestern Yunnan, China[J].Geochimica,2018,47(05):541-553.[doi:10.19700/j.0379-1726.2018.05.007]
点击复制

滇西北北衙超大型金多金属矿床铁质来源于玄武岩的新证据

参考文献/References:

[1] 徐受民. 滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系[D]. 北京: 中国地质大学, 2007.
Xu Shou-min. Metallogenic modeling of the Beiya gold deposit in western Yunnan and its relation to the Cenozoic alkali-rich porphyries [D]. Beijing: China University of Geosciences, 2007 (in Chinese with English abstract).
[2] 和中华, 周云满, 和文言, 苏纲生, 李万华, 杨绍文. 滇西北衙超大型金多金属矿床成因类型及成矿规律[J]. 矿床地质, 2013, 32(2): 244–258.
He Zhong-hua, Zhou Yun-man, He Wen-yan, Su Gang-sheng, Li Wan-hua, Yang Shao-wen. Genetic types and metallogenic regularity of Beiya superlarge gold-polymetallic deposit, northwestern Yunnan [J]. Mineral Deposit, 2013, 32(2): 244– 258 (in Chinese with English abstract).
[3] 和文言, 喻学惠, 莫宣学, 和中华, 李勇, 黄行凯, 苏纲生. 滇西北衙多金属矿田矿床成因类型及其与富碱斑岩关系初探[J]. 岩石学报, 2012, 28(5): 1401–1412.
He Wen-yan, Yu Xue-hui, Mo Xuan-xue, He Zhong-hua, Li Yong, Huang Xing-kai, Su Gang-sheng. Genetic types and the relationship between alkali-rich intrusion and mineralization of Beiya gold polymetallic ore field, western Yunnan Province, China [J]. Acta Petrol Sinica, 2012, 28(5): 1401–1412 (in Chinese with English abstract).
[4] 葛良胜, 郭晓东, 邹依林, 李振华, 张晓辉. 云南北衙金矿床地质特征及成因研究[J]. 地质找矿论丛, 2002, 17(1): 32–40.
Ge Liang-sheng, Guo Xiao-dong, Zou Yi-lin, Li Zhen-hua, Zhang Xiao-hui. Geological characteristics and genesis of beiya gold deposit, Yunnan Province [J]. Contrib Geol Mineral Resour Res, 2002, 17(1): 32–40 (in Chinese with English abstract).
[5] 刘显凡, 宋祥峰, 卢秋霞, 陶专, 龙训荣. 地幔流体在滇西富碱斑岩成岩成矿过程中的作用——地质年代学和同位素地球化学制约[J]. 吉林大学学报(地球科学版), 2004, 36(4): 503–510.
Liu Xian-fan, Song Xiang-feng, Lu Qiu-xia, Tao Zhuan, Long Xun-rong. Mantle fluid’s action in the processes of petrogenesis of alkalic porphyry and associated mineralizations, western Yunnan, China — Constraint of geochronology and isotope geochemistry [J]. J Jilin Univ (Earth Sci), 2004, 36(4): 503–510 (in Chinese with English abstract).
[6] 肖晓牛, 喻学惠, 莫宣学, 杨贵来, 李勇, 黄行凯. 滇西北衙金多金属矿床流体包裹体研究[J]. 地学前缘, 2009, 16(2): 250–261.
Xiao Xiao-niu, Yu Xue-hui, Mo Xuan-xue, Yang Gui-lai, Li Yong, Huang Xing-kai. A study of fluid inclusions from Beiya gold-polymetallic deposit in Western Yunnan [J]. Earth Sci Front, 2009, 16(2): 250–261 (in Chinese with English abstract).
[7] 和文言. 滇西北衙超大型金多金属矿床岩浆作用与成矿模式[D]. 北京: 中国地质大学, 2014.
He Wen-yan. The Beiya giant gold-polymetallic deposit: Magmatism and metallogenic model [D]. Bejing: China University of Geosciences, 2014 (in Chinese with English abstract).
[8] 蒋成竹. 滇西北衙金多金属矿床钾质岩浆活动与成矿作用[D]. 北京: 中国地质大学, 2014.
Jiang Cheng-zhu. Potassic magmatism and ore-forming processes of Beiya gold deposit in Western Yunnan [D]. Beijing: China University of Geosciences, 2014 (in Chinese with English abstract).
[9] Zhang Z C, Hou T, Santosh M, Li H M, Li J W, Zhang Z H, Song X Y, Wang M. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview [J]. Ore Geol Rev, 2014, 57(1): 247–263.
[10] 张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 岩浆-热液系统中铁的富集机制探讨[J]. 岩石学报, 2014, 30(5): 1189–1204.
Zhang Zhao-chong, Hou Tong, Li Hou-min, Li Jian-wei, Zhang Zuo-heng, Song Xie-yan. Enrichment mechanism of iron in magmatic hydrothermal system [J]. Acta Petrol Sinica, 2014, 30(5): 1189–1204 (in Chinese with English abstract).
[11] Zhu B, Zhang H F, Zhao X M, He Y S. Iron isotope fractionation during skarn-type alteration: Implications for metal source in the Han-Xing iron skarn deposit [J]. Ore Geol Rev, 2016, 74: 139–150.
[12] Markl G, von Blanckenburg F, Wagner T. Iron isotope fractionation during hydrothermal ore deposition and alteration [J]. Geochim Cosmochim Acta, 2006, 70(12): 3011–3030.
[13] Wang Y, Zhu X K, Mao J W, Li Z H, Cheng Y B. Iron isotope fractionation during skarn-type metallogeny: A case study of Xinqiao Cu-S-Fe-Au deposit in the Middle-Lower Yangtze Valley [J]. Ore Geol Rev, 2011, 43(1): 194–202.
[14] 王跃, 朱祥坤. 铁同位素体系及其在矿床学中的应用[J]. 岩石学报, 2012, 28(11): 3638–3654.
Wang Yue, Zhu Xiang-kun. Fe isotope systematics and its implication in ore deposit geology [J]. Acta Petrol Sinica, 2012, 28(11): 3638–3654 (in Chinese with English abstract).
[15] Sun J, Zhu X K, Chen Y L, Fang N. Iron isotopic constraints on the genesis of Bayan Obo ore deposit, Inner Mongolia, China [J]. Precamb Res, 2013, 235: 88–106.
[16] 李文昌, 潘桂棠, 侯增谦, 莫宣学, 王立全. 西南“三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010: 1–491.
Li Wen-chang, Pan Gui-tang, Hou Zeng-qian, Mo Xuan-xue, Wang Li-quan. Collision Orogeny Metallogenic and Prospecting Techniques in Sanjiang, Southwestern China [M]. Beijing: Geological Publishing House, 2010: 1–491 (in Chinese).
[17] 蔡新平. 滇西北衙金矿矿床特征、成因及找矿远景预测[M]//中国科学院黄金科技工作领导小组. 中国金矿地质地球化学研究. 北京: 科学出版社, 1993: 134–151.
Cai Xin-ping. Characteristics, genesis and prospecting of Beiya gold deposit, western Yunnan [M] // Gold Science and Technology Work Leading Group of Chinese Academy of Sciences. Geology and Geochemistry of Gold Deposits in China. Beijing: Science Press, 1993: 134–151 (in Chinese).
[18] 汪云峰, 张招崇, 王丽娟, 吕林素, 李宏博. 峨眉山大火成岩省虎跳峡和金安二叠纪玄武岩的地球化学特征及其对源区的约束[J]. 岩石学报, 2013, 29(12): 4387–4403.
Wang Yun-feng, Zhang Zhao-chong, Wang Li-juan, Lü Lin-su, Li Hong-bo. Geochemical characteristics of Permian basalt from Hutiaoxia and Jin’an area of the Emeishan Large Igenous Province and constraints on their sourcs region [J]. Acta Petrol Sinica, 2013, 29(12): 4387–4403 (in Chinese with English abstract).
[19] Boynton W V. Geochemistry of the rare earth elements: Meteorite studies [M] // Henderson P. Rare Earth Element Geochemistry. Elservier, 1984: 63–114.
[20] Rudnick R L, Gao S. Composition of the continental crust [M] // Holland H D, Turekian K K. Treatise on Geochemistry. Oxford: Elsevier, 2003: 1–64.
[21] Beard B L, Johnson C M. Fe isotope variations in the modern and ancient earth and other planetary bodies [M] // Johnson C M, Beard B L, Albarède F. Geochemistry of Non-Tra?ditional Stable Isotopes. Rev Mineral Geochem, 2004, 55(1): 319–357.
[22] Dauphas N, van Zuilen M, Wadhwa M, Davis A M, Marty B, Janney P E. Clues from Fe isotope variations on the origin of Early Archean BIFs from Greenland [J]. Science, 2004, 306(5704): 2077–2080.
[23] Poitrasson F, Halliday A N, Lee D C, Levasseur S, Teutsch N. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms [J]. Earth Planet Sci Lett, 2004, 222(3–4): 253–266.
[24] Poitrasson F, Freydier R. Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS [J]. Chem Geol, 2005, 222(1–2): 132–147.
[25] Heimann A, Beard B L, Johnson C M. The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high Fe/Fe ratios in siliceous igneous rocks [J]. Geochim Cosmochim Acta, 2008, 72(17): 4379–4396.
[26] Schuessler J A, Schoenberg R, Sigmarsson O. Iron and lithium isotope systematic of the Hekla volcano, Iceland: Evidence for Fe isotope fractionation during magma differentiation [J]. Chem Geol, 2009, 258(1/2): 78–91.
[27] 朱祥坤, 孙剑, 王跃. 岩浆过程中铁同位素的地球化学行为[J]. 地球科学与环境学报, 2016, 38(1): 1–10.
Zhu Xiang-kun, Sun Jian, Wang Yue. Fe isotope geochemistry of magmatic system [J]. J Earth Sci Environ, 2016, 38(1): 1–10 (in Chinese with English abstract).
[28] Telus M, Dauphas N, Moynier F, Tissot F L H, Teng F Z, Nabelek P I, Craddock P R, Groat L A. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids and pegmatites [J]. Geochim Cosmochim Acta, 2012, 97: 247–265.
[29] Craddock P R, Warren J M, Dauphas N. Abyssal peridotites reveal the near-chondritic Fe isotopic composition [J]. Earth Planet Sci Lett, 2013, 365: 63–76.
[30] Sossi P A, Foden J D, Halverson G P. Redox-controlled iron isotope fractionation during magmatic differentiation: An example from the Red Hill intrusion, S. Tasmania [J]. Contrib Mineral Petrol, 2012, 164(5): 757–772.
[31] 蒋成竹, 王庆飞, 李龚健, 马楠, 胡兆初. 三江北衙金多金属矿床容矿岩体相对氧化状态特征[J]. 岩石学报, 2013, 29(11): 3925–3936.
Jiang Cheng-zhu, Wang Qing-fei, Li Gong-jian, Ma Nan, Hu Zhao-chu. Relative oxidation states of intrusions in Beiya gold- polymetallic deposit in Sanjiang area, Yunnan, SW China [J]. Acta Petrol Sinica, 2013, 29(11): 3925–3936 (in Chinese with English abstract).
[32] Chou I M, Eugster H P. Solubility of magnetite in supercritical chloride solutions [J]. Am J Sci, 1977, 277(10): 1296–1314.
[33] Johnson C M, Beard B L, Beukes N J. Ancient geochemical cycling in the earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton [J]. Contrib Mineral Petrol, 2003, 144(5): 523–547.
[34] Hass J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems: Estimates of standard partial modal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures [J]. Geochim Cosmochim Acta, 1995, 59(21): 4329–4350.
[35] Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and significance of the oxidation state of europium [J]. Chem Geol, 1991, 93: 219–230.
[36] Hopf S. Behaviour of rare earth elements in geothermal systems of New Zealand [J]. J Geochem Explor, 1993, 47(1–3): 333–357.
[37] 赵劲松, 邱学林, 赵斌, 涂湘林, 虞珏, 芦铁山. 大冶-武山矿化夕卡岩的稀土元素地球化学研究[J]. 地球化学, 2007, 36(4): 400–412.
Zhao Jin-song, Qiu Xue-lin, Zhao Bin, Tu Xiang-lin, Yu Jue, Lu Tie-shan. REE geochemistry of mineralized skarns from Daye to Wushan region, China [J]. Geochimica, 2007, 36(4): 400–412 (in Chinese with English abstract).
[38] 谭威, 韩润生, 王雷, 刘飞, 郭钰心玥, 王明志, 崔俊豪. 滇西北北衙金多金属矿床稀土元素地球化学[J]. 中国稀土学报, 2016, 34(1): 113–128.
Tan Wei, Han Run-sheng, Wang Lei, Liu Fei, Guo Yu-xin-yue, Wang Ming-zhi, Cui Jun-hao. REE geochemical of the gold- polymetailic deposit in Beiya, western Yunnan province [J]. J Chinese Rare Earth Soc, 2016, 34(1): 113–128 (in Chinese with English abstract).
[39] 谭威. 滇西北北衙斑岩型金铁多金属矿床铁质来源及成矿模式[D]. 昆明: 昆明理工大学, 2016.
Tan Wei. Iron source and metallogenic model of the Beiya porphyry-type Au-Fe polymetallic deposit in northwestern Yunnan, China [D]. Kunming: Kunming University of Science and Technology, 2016 (in Chinese with English abstract).
[40] Carew M J, Mark G, Oliver N H S, Pearson N. Trace element geochemistry of magnetite and pyrite in Fe oxide (±Cu-Au) mineralised systems: Insights into the geochemistry of ore- for?ming fluids [J]. Geochim Cosmochim Acta, 2006, 70(18): A83.
[41] Nadoll P, Mauk J L, Hayes T S, Koenig A E, Box S E. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States [J]. Econ Geol, 2012, 107(6): 1275–1292.
[42] Huang X W, Qi L, Meng Y M. Trace element geochemistry of magnetite from the Fe(-Cu) deposits in the Hami region, eastern Tianshan Orogenic Belt, NW China [J]. Acta Geol Sinica, 2014, 88(1): 176–195.
[43] Huston D L, Sie S H, Suter G F, Cooke D R, Both R A. Trace elements in sulfide minerals from eastern Australian volcanic- hosted massive sulfide deposits: Part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite: Comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems [J]. Econ Geol, 1995, 90(5): 1167–1196.
[44] 邹志超, 胡瑞忠, 毕献武, 叶霖, 武丽艳, 冯彩霞, 唐永永. 滇西北兰坪盆地李子坪铅锌矿床微量元素地球化学特征[J]. 地球化学, 2012, 41(5): 482–496.
Zou Zhi-chao, Hu Rui-zhong, Bi Xian-wu, Ye Lin, Wu Li-yan, Feng Cai-xia, Tang Yong-yong. Trace element geochemistry of the Liziping Pb-Zn deposit, the Lanping Basin, Northwest Yunnan Province, China [J]. Geochimica, 2012, 41(5): 482– 496 (in Chinese with English abstract).
[45] Campbell I H, Lesher C M, Coad P, Franklin J M, Gorton M P, Thurston P C. Rare earth element mobility in alteration pipes below massive Cu-Zn-sulfide deposits [J]. Chem Geol, 1984, 45(3): 181–202.
[46] 凌其聪, 刘丛强. 低级变质岩在热液蚀变过程中的微量元素地球化学行为——以赣东北银山地区双桥山群为例[J]. 岩石学报, 2002, 18(1): 100–108.
Ling Qi-cong, Liu Cong-qiang. Geochemical behavior of trace element during hydrothermal alteration in low-metamorphic rock: A case study for Shuangqiaoshan Group in Yinshan area, northwestern Jiangxi province China [J]. Acta Petrol Sinica, 2002, 18(1): 100–108 (in Chinese with English abstract).
[47] 刘飞, 韩润生, 王雷, 郭钰心玥, 王明志, 谭威. 滇西北北衙斑岩型金多金属矿床万硐山矿段构造控岩控矿作用机制[J]. 大地构造与成矿学, 2016, 40(2): 266–280.
Liu Fei, Han Run-sheng, Wang Lei, Guo Yu-xin-yue, Wang Ming-zhi, Tan Wei. Mechanism of rock- and ore-controlling structures in the Wandongshan ore block of the Beiya super-large porphyry-type poly-metallic gold deposit, northwestern Yunnan [J]. Geotecton Metallogen, 2016, 40(2): 266– 280.
[48] 侯增谦. 青藏高原碰撞造山与成矿作用[M]. 北京: 地质出版社, 2008: 1–980.
Hou Zeng-qian. Collisional Orogenic and Metallogenesis in Tibetan [M]. Beijing: Geological Publishing House, 2008: 1–980 (in Chinese).

备注/Memo

收稿日期(Received): 2016-12-21; 改回日期(Revised): 2017-04-09; 接受日期(Accepted): 2017-10-22
基金项目: 中国地质调查局“滇西北北衙北段金多金属矿区控矿构造解析与找矿预测”项目(12120113095900); 云南省矿产资源预测与评价重点工程实验室创新团队项目(2012); 昆明理工大学创新团队项目
作者简介: 谭威(1991–), 男, 助理工程师, 从事矿床学方向研究。E-mail: 1041832589@qq.com;
* 通讯作者(Corresponding author): HAN Run-sheng, E-mail: 554670042@qq.com; Tel: +86-871-65180377

更新日期/Last Update: 2018-09-30