PDF下载 分享
[1]陈 伟,陈 斌*,孙克克.江西彭山锡多金属矿集区曾家垄锡矿相关的铝质花岗岩成因[J].地球化学,2018,47(05):554-574.[doi:10.19700/j.0379-1726.2018.05.008]
 CHEN Wei,CHEN Bin* and SUN Ke-ke.Petrogenesis of the Zengjialong highly differentiated granite in the Pengshan Sn-polymetallic ore field, Jiangxi Province[J].Geochimica,2018,47(05):554-574.[doi:10.19700/j.0379-1726.2018.05.008]



[1] Keppler H, Wyllie P J. Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems haplogranite- H2O-HCl and haplogrnite-H2O-HF [J]. Contrib Mineral Petrol, 1991, 109(2): 139–150.
[2] Chabiron A, Pironon J, Massare D. Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy [J]. Contrib Mineral Petrol, 2003, 146(4): 486–492.
[3] Agangi A, Kamenestsky V S. The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: Insights from the Gawler Rnage Volcanics, South Australia [J]. Chem Geol, 2010, 273: 314–325.
[4] Dingwell D B, Scarfe Christopher M, Cronin David J. The effect of fluorine on viscosities in the system Na2O-Al2O3- SiO2: Implications for phonolites, trachytes andrhyolites [J]. Am Mineral, 1985, 70(1): 80–87.
[5] Mysen B O, Cody G D. Solubility and solution mechanism of H2O in alkali silicate melts and glasses at high pressure and temperature [J]. Geochim Cosmochim Acta, 2004, 68(24): 5113–5126.
[6] Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect [J]. Contrib Mineral Petrol, 1996, 123(3): 323–333.
[7] Chen B, Ma X H, Wang Z Q. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymatallic mineralization [J]. J Asian Earth Sci, 2014, 93: 301–314.
[8] Wang Z Q, Chen B, Ma X H. Petrogenesis of the late Mesozoic Guposhan composite plutons from the Nanling Range, South China: Implications for W-Sn mineralization [J]. Am J Sci, 2014, 314(1): 235–277.
[9] 朱金初, 张佩华, 谢才富, 张辉, 杨策. 南岭西段花山-姑婆山A型花岗质杂岩带: 岩石学、地球化学和岩石成因[J]. 地质学报, 2006, 80(4): 529–542.
Zhu Jin-chu, Zhang Pei-hua, Xie Cai-fu, Zhang Hui, Yang Ce. The Huashan-Guposhan A-type granitoid belt in the western part of the Nanling Mountains: Petrology, geochemistry and genetic interpretations [J]. Acta Geol Sinica, 2006, 80(4): 529–542 (in Chinese with English abstract).
[10] 毛景文, 谢桂青, 郭春丽, 陈毓川. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10): 2329–2338.
Mao Jing-wen, Xie Gui-qing, Guo Chun-li, Chen Yu-chuan. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metaliogenic ages and corresponding geody-namic processes [J]. Acta Petrol Sinica, 2007, 23(10): 2329–2338 (in Chinese with English abstract).
[11] Guo C L, Chen Y C, Zeng Z L, Lou F S. Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes [J]. Lithos, 2012, 148: 209–227.
[12] Li Z Z, Qin K Z, Li G M, Ishiara S, Jin L Y, Song G X, Meng Z J. Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing’an Range, NE China: Partial melting of the juvenile lower crust in intra-plate extensional environment [J]. Lithos, 2014, 202–203: 138–156.
[13] 黄兰椿, 蒋少涌. 江西大湖塘钨床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究[J]. 岩石学报, 2012, 28(12): 3887–3900.
Huang Lan-chun, Jiang Shao-yong. Zircon U-Pb geochronology and petrogenesis of the prophy-like muscovite granite in the Dahutang tungsten deposite, Jiangxi Province [J]. Acta Petrol Sinica, 2012, 28(12): 3887–3900 (in Chinese with English abstract).
[14] Sun K K, Chen B. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China [J]. Am Mineral, 2017, 102: 1114–1128.
[15] Webster J, Thomas R, Seltmann H J, Tappen C. Geochemical evolution of halogen-enriched granite magmas and minera-lizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany [J]. Mineral Deposita, 2004, 39(4): 452–472.
[16] Helmy H M, Kaindl R and Shibata T. Genetically related Mo-Bi-Ag and U-F mineralization in A-type granite, Gabal Gattar, eastern Desert, Egypt [J]. Ore Geol Rev, 2014, 62(9): 181–190.
[17] 卢树东, 杜杨松, 肖锷, 徐春伟. 江西彭山锡(铅锌)多金属矿田构造地质特征及成矿机理探讨[J]. 大地构造与成矿学, 2004, 28(3): 297–305.
Lu Shu-dong, Du Yang-song, Xiao E, Xu Chun-wei. Study on tectonic features and metallogenic mechanism of Pengshan Sn-Pb-Zn polymetallic orefield, Jiangxi Province [J]. Geotecton Metallogen, 2004, 28(3): 297–305 (in Chinese with English abstract).
[18] 罗兰, 蒋少涌, 杨水源, 赵葵东, 汪石林, 高文亮. 江西彭山锡多金属矿集区隐伏花岗岩体的岩石地球化学、锆石U-Pb年代学和Hf同位素组成[J]. 岩石学报, 2010, 26(9): 2818–2834.
Luo Lan, Jiang Shao-yong, Yang Shui-yuan, Zhao Kui-dong, Wang Shi-lin, Gao Wen-liang. Petrochemistry, zircon U-Pb dating and Hf isotopic composition of the granitic pluton in the Pengshan Sn-polymetallic ore field, Jiangxi Province [J]. Acta Petrol Sinica, 2010, 26(9): 2818–2834 (in Chinese with English abstract).
[19] Xu B, Jiang S Y, Luo L, Zhao K D, Ma L. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: Cons-traints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes [J]. Mineral Deposita, 2016, 52(3): 337–360.
[20] Deng Z B, Liu S W, Zhang L F, Wang W, Yang P T, Luo P, Guo B R. Geochemistry, zircon U-Pb and Lu-Hf isotopes of an Early Cretaceous intrusive suite in northeastern Jiangxi Province, South China Block: Implications for petrogenesis, crust/mantle interactions and geodynamic processes [J]. Lithos, 2014, 200–201(1): 334–354.
[21] 卢树东, 汪石林, 高文亮, 肖锷, 许建华. 江西德安黄金洼锡矿地质特征及控矿因素[J]. 地球科学与环境学报, 2006, 28(1): 17–23.
Lu Shu-dong, Wang Shi-lin, Gao Wen-liang, Xiao E, Xu Jian-hua. Geological feature and ore-control factors of Huangjinwa Sn deposit, De’an county in Jiangxi Province [J]. J Earth Sci Environ, 2006, 28(1): 17–23 (in Chinese with English abstract).
[22] 马长信. 关于彭山高挥发份花岗岩底辟穹窿构造及其控矿作用[J]. 地质评论, 1989, 35(2): 127–135.
Ma Chang-xin. A high-volatile diapiric granite dome in the Pengshan area and its ore-controlling role [J]. Geol Rev, 1989, 35(2): 127–135 (in Chinese with English abstract).
[23] 宋彪, 张玉海, 万渝生, 简平. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质评论, 2002, 48(增刊): 26–30.
Song Biao, Zhang Yu-hai, Wan Yu-sheng, Jian Ping. Mount making and procedure of the SHRIMP dating [J]. Geol Rev, 2002, 48(suppl): 26–30 (in Chinese with English abstract).
[24] Wiedenbeck M, Alle P, Corfu F, Spiegel J, Griffin W L. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses [J]. Geostand Geoanaly Res, 1995, 19(1): 1–23.
[25] Griffin W L, Powell W, Pearson N J, O’Reilly S Y. GLITTER: Data reduction software for laser ablation ICP-MS: Laser Ablation-ICP-MS in the earth sciences [J]. Mineral Assoc, Can Short Course Ser, 2008, 40: 204–207.
[26] 李惠民, 周红英, 郝爽. 激光烧蚀等离子体质谱(LA-ICP- MS)法测定锡多金属矿床中锡石U-Pb同位素年龄几个关键问题的思考[C]//岩石学与地球动力学研讨会论文摘要(下册), 西安: 2011: 178–179.
Li Hui-min, Zhou Hong-ying, Hao Shuang. Thinking of several key problems about the determination of cassiterite U-Pb isotope age in the tin polymentallic deposit by laser ablation multiple collector plasma mass spectrometry (LA-MC-ICP- MS) [C] // Abstract of National Symposium on Petrology and Geodynamics (Volume 2), Xi’an: 2011: 178– 179 (in Chinese).
[27] Yuan S D, Peng J T, Hao S, Li H M, Geng J Z, Zhang D L. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polyme?tallic mineralization [J]. Ore Geol Rev, 2011, 42(1): 235–242.
[28] Ludwig K R. ISOPLOT 3.00: A Geochronology Toolkit for Miscrosoft Excel [M]. Berkeley: Geochronological Center Special Publication: 1–70.
[29] Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chem Geol, 2008, 257(1–2): 34–43.
[30] Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. Continental and oceanic crust recycling-induced melt- peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths [J]. J Petrol, 2010, 51(1–2): 537–571.
[31] 涂湘林, 张红, 邓文峰, 凌明星, 梁华英, 刘颖, 孙卫东. RESOlution 激光剥蚀系统在微量元素原位微区分析的应用[J]. 地球化学, 2011, 40(1): 83–98.
Tu Xiang-lin, Zhang Hong, Deng Wen-feng, Ling Ming-xing, Liang Hua-ying, Liu Ying, Sun Wei-dong. Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses [J]. Geochimica, 2011, 40(1): 83–98 (in Chinese with English abstract).
[32] 宁思远, 汪方跃, 薛维栋, 周涛发. 长江中下游铜陵地区宝山岩体地球化学研究[J]. 矿物学报, 2017, 46(5): 397–412.
Ning Si-yuan, Wang Fang-yue, Xue Wei-dong, Zhou Tao-fa. Geochemistry of the Baoshan pluton in the Tongling region of the Lower Yangtze River Belt [J]. Acta Mineral Sinica, 2017, 46(5): 397–412 (in Chinese with English abstract).
[33] 汪方跃, 葛粲, 宁思远, 聂利青, 钟国雄. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422–3436.
Wang Fang-yue, Ge Can, Ning Si-yuan, Nie Li-qing, Zhong Guo-xiong. A new approach to LA-ICP-MS mapping and application in geology [J]. Acta Petrol Sinica, 2017, 33(11): 3422–3436 (in Chinese with English abstract).
[34] 侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595–2604.
Hou Ke-jun, Li Yan-he, Zou Tian-ren, Qu Xiao-ming, Shi Yu-ruo, Xie Gui-qing. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications [J]. Acta Petrol Sinica, 2007, 23(10): 2595–2604 (in Chinese with English abstract).
[35] Wu C M, Chen H X. Revised Ti-in-biotite geothermometer for ilmenite or rutile-bearing crustal metapelites [J]. Chinese Sci Bull, 2015, 60(1): 116–121.
[36] Rieder M, Cavazzini G, D’Yakonov Y S, Frank-Kamenetskii V A, Gpttardi G, Koval P V, Müller G, Neiva A M R, Robert J L, Sassi F P, Takeda H, Weiss Z, Wones D R. Nomenclature of the micas [J]. Mineral Mag, 1999, 63(2): 267–279.
[37] Abdel-Rahman A M. Nature of biotites from alkaline, calc- alkaline, and peraluminous magmas [J]. J Petrol, 1994, 35(2): 525–541.
[38] ?ern? P. Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies? [J] Precamb Res, 1991, 51(1–4): 429–468.
[39] Sun S-s, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geol Soc London Spec Publ, 1989, 42: 313–345.
[40] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and pretrogenesis [J]. Contrib Mineral Petrol, 1987, 95(4): 407–419.
[41] Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types [J]. Earth Planet Sci Lett, 1983, 64(2): 295–304.
[42] Chen J F, Jahn B M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence [J]. Tectonophysics, 1998, 284: 101–133.
[43] 李献华. 华南地壳增长与构造演化的年代学格架与同位素体系制约[J]. 矿物岩石地球化学通报, 1993, 12(3): 111–115.
Li Xian-hua. Chronology and isotopic constranits on crustal growth and structure evolution of southern China [J]. Bull Mineral Petrol Geochem, 1993, 12(3): 111–115 (in Chinese with English abstract).
[44] 谢桂青. 中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例[D]. 贵阳: 中国科学院地球化学研究所, 2003.
Xie Gui-qing. Geology, geochemistry and geodynamics of mafic rocks in Late Mesozoic in Southeast China, Jiangxi Province [D]. Guiyang: Insitute of Geochemistry, Chinese Academy of Sciences, 2003 (in Chinese with English abstract).
[45] S?derlunda U, Patchetta P J, Vervoort J D, Isachsena C E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions [J]. Earth Planet Sci Lett, 2004, 219(3–4): 311–324.
[46] Bouvier A, Vervoort J D, Patchetta P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets [J]. Earth Planet Sci Lett, 273(1–2): 48–57.
[47] Griffin W L, Pearson N J, Belousova E, Jackson S E, Achterbergh E V, O’Reilly S Y, Shee S R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites [J]. Geochim Cosmochim Acta, 2000, 64(1): 133–147.
[48] Wang X L, Zhou J C, Griffin W L, Zhao G C, Yu J H, Qiu J S, Zhang Y J, Xing G F. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China [J]. Precamb Res, 2014, 242(2): 154–171.
[49] Wang W, Zhou M F. Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of the Neoproterozoic sedimentary basin in the eastern Jiangnan Orogen, South China [J]. J Sediment Res, 2013, 83(11): 974–993.
[50] 李福春, 朱金初, 金章东. 华南富锂氟含稀有金属花岗岩的成因分析[J]. 矿床地质, 2000, 19(4): 377–385.
Li Fu-chun, Zhu Jin-chu, Jin Zhang-dong. Genetic interpretation of Li-F-rich rare metal-bearing granites in South China [J] Mineral Deposit, 2000, 19(4): 377–385 (in Chinese with English abstract).
[51] Jahn B M, Wu F Y, Capdevila R, Martineau F, Zhao Z H. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mointains in NE China [J]. Lithos, 2001, 69: 171–198.
[52] Manning D A C. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb [J]. Contrib Mineral Petrol, 1981, 76(2): 206–215.
[53] Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu*, Y/Ho, and Zr/Hf of evolving peralu-minous granite suites [J]. Geochim Cosmochim Acta, 1999, 63: 489–508.
[54] Kawabe I. Thermochemical parameters for solution of lanthanides (Ⅲ) ethylsulphate and trichloride hydrate series: Tetrad effects and hydration change in aqua Ln3+ ion series [J]. Geochem J, 1999, 33(4): 249–265.
[55] Monecke T, Kempe U, Monecke J, Wolf M S. Tetrad effect in rare earth element distribution patterns: A method of quan?ti?fication with application to rock and mineral samples from granite-related rare metal deposits [J]. Geochim Cosmo?chim Acta, 2002, 66(7): 1185–1196.
[56] Liu C Q, Zhang H. The lanthanide tetrad effect in apatite from the Altay No.3 pegmatite, Xingjiang, China: An intrinsic feature of the pegmatite magma [J]. Chem Geol, 2005, 214(1): 61–77.
[57] 魏春景. 麻粒岩相变质作用与花岗岩成因-Ⅱ: 变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟[J]. 岩石学报, 2016, 32(6): 1625–1643.
Wei Chun-jing. Granulite facies metamorphism and petroge-nesis of granite (Ⅱ): Quantitative modeling of the HT-UHT phase equilibria for metapelites and the petrogenesis of S-type granite [J]. Acta Petrol Sinica, 2016, 32(6): 1625–1643 (in Chinese with English abstract).
[58] Palin R M, White R W, Green E C R, Diener J F A, Powell R, Holland T J B. High-grade metamorphism and partial melting of basic and intermediate rocks [J]. J Metamorph Geol, 2016, 34(9): 871–892.
[59] 毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 2008, 14(4): 510–516.
Mao Jing-wen, Xie Gui-qing, Guo Chun-li, Yuan Shun-da, Cheng Yan-bo, Chen Yu-chuan. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallo-genic settings [J]. Geol J China Univ, 2008, 14(4): 510–516 (in Chinese with English abstract).
[60] 李武显, 周新民. 中国东南部晚中生代俯冲带探索[J]. 高校地质学报, 1999, 5(2): 164–169.
Li Wu-xian, Zhou Xin-min. Late Mesozoic subduction zone of southern China [J]. Geol J China Univ, 1999, 5(2): 164–169 (in Chinese with English abstract).
[61] 张家箐, 梅玉萍, 王登红. 赣北香炉山白钨矿床的同位素年代学研究及其地质意义[J]. 地质学报, 2008, 82(7): 927– 931.
Zhang Jia-jing, Mei Yu-ping, Wang Deng-hong. Isochrono?logy study on the Xianglushan scheelite deposit in North Jiangxi Province and its geological significance [J]. Acta Geol Sinica, 2008, 82(7): 927–931 (in Chinese with English abstract).
[62] 梅玉萍, 杨红梅, 段瑞春, 张利国, 蔡应雄, 童喜润, 谭娟娟, 刘重芃, 卢山松. 广东阳春锡山钨锡矿床成岩成矿年代学研究[J]. 地质学报, 2013, 87(9): 1370–1376.
Mei Yu-ping, Yang Hong-mei, Duan Rui-chun, Zhang Li-guo, Cai Ying-xiong, Tong Xi-run, Tan Juan-juan, Liu Chong-peng, Lu Shan-song. Diagenetic and metallogenic geochronlogy study of the Xishan W-Sn ore deposit in Yangchuang of Guangdong Province [J]. Acta Geol Sinica, 2013, 87(9): 1370– 1376 (in Chinese with English abstract).
[63] 刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件[J]. 岩石学报, 2007, 23(5): 967–976.
Liu Yu-ping, Li Zheng-xiang, Li Hui-min, Guo Li-guo, Xu Wei, Ye Lin, Li Chao-yang, Pi Dao-hui. U-Pb geochronology of cassi?terite and zircon from the Dulong Sn-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan province, China [J]. Acta Petrol Sinica, 2007, 23(5): 967–976 (in Chinese with English abstract).
[64] Goldfarb R J, Groves D I. Orogenic gold: Common or evolving fluid and metal sources through time [J]. Lithos, 2015, 233: 2–26.


[1]朱昱桦,单 强,王历星,等.海南岛罗葵洞钼矿床成岩成矿时代及矿床成因探讨[J].地球化学,2018,47(03):268.[doi:10.19700/j.0379-1726.2018.03.004]
 ZHU Yu-hua,SHAN Qiang,WANG Li-xing,et al.Age of host-rocks and mineralization from the Luokuidong molybdenum ore deposit in Hainan Island: Implication for deposit genesis[J].Geochimica,2018,47(05):268.[doi:10.19700/j.0379-1726.2018.03.004]
[2]丘增旺,王 核*,闫庆贺,等.广东长埔锡多金属矿床石英斑岩锆石U-Pb年代学、Hf同位素组成及其地质意义[J].地球化学,2016,45(04):374.
 QIU Zeng-wang,WANG He*,YAN Qing-he,et al.Zircon U-Pb geochronology and Lu-Hf isotopic composition of quartz porphyry in the Changpu Sn polymetallic deposit, Guangdong Province, SE China and their geological significance[J].Geochimica,2016,45(05):374.
 GAO Xin-yu,ZHAO Tai-ping*,SHI Xiao-bin,et al.Geochemisty and petrogenesis of the Early Cretaceous Shangcheng and Daquandian Granites in the North Dabie Mountains[J].Geochimica,2013,42(05):307.
[4]金晓东,潘长春*,于 双,等.华北陆块南缘小秦岭地区早白垩世埃达克质花岗岩的LA-ICP-MS锆石U-Pb年龄、Hf同位素和元素地球化学特征[J].地球化学,2012,41(04):303.
 GAO Xin-yu,ZHAO Tai-ping*,GAO Jian-feng,et al.LA-ICP-MS zircon U-Pb ages, Hf isotopic composition and geochemistry of adakitic granites in the Xiaoqinling region, the south margin of the North China block[J].Geochimica,2012,41(05):303.
[5]汤鸿伟*,侯明才,张 杰,等.东昆仑大岔沟地区晚三叠世侵入岩年代学、岩石地球化学特征及Hf 同位素研究[J].地球化学,2018,47(05):491.[doi:10.19700/j.0379-1726.2018.05.004]
 TANG Hong-wei,HOU Ming-cai,ZHANG Jie,et al.Geochronology, geochemistry, and Hf isotopic composition of the Late Triassic intrusive rocks from Dachagou area, East Kunlun[J].Geochimica,2018,47(05):491.[doi:10.19700/j.0379-1726.2018.05.004]
[6]段博林,苏 犁*,王 静,等.扬子板块西北缘新元古代洋县桑溪沟花岗岩成因: Rodina 超大陆裂解与地壳重熔[J].地球化学,2018,47(05):506.[doi:10.19700/j.0379-1726.2018.05.005]
 DUAN Bo-lin,SU Li*,WANG Jing and XIAO Liang.Origin of Neoproterozoic complexes in the northwestern margin of the Yangtze plate Sangxigou granite: Breakup of the Rodinia supercontinent and melting of the crust[J].Geochimica,2018,47(05):506.[doi:10.19700/j.0379-1726.2018.05.005]


收稿日期(Received): 2017-12-29; 改回日期(Revised): 2018-02-06; 接受日期(Accepted): 2018-02-12
基金项目: 国家自然科学基金(41272067)
作者简介: 陈伟(1987–), 男, 博士研究生, 岩石学专业。E-mail: chenweipku@163.com
* 通讯作者(Corresponding author): CHEN Bin, E-mail: binchen@pku.edu.cn; Tel: +86-755-88015516

更新日期/Last Update: 2018-09-30