PDF下载 分享
[1]贺儒良,贾望鲁*,彭平安.排-留烃过程对富有机质页岩纳米孔隙发育影响的热模拟实验研究[J].地球化学,2018,47(05):575-585.[doi:10.19700/j.0379-1726.2018.05.009]
 HE Ru-liang,JIA Wang-lu* and PENG Ping-an.Influence of hydrocarbon expulsion and retention on the evolution of nanometer- scale pores in organic matter rich shale: An example from pyrolysis experiment[J].Geochimica,2018,47(05):575-585.[doi:10.19700/j.0379-1726.2018.05.009]
点击复制

排-留烃过程对富有机质页岩纳米孔隙发育影响的热模拟实验研究

参考文献/References:

[1] Jarvie D M, Hill R J, Ruble T E, Pollastro R M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment [J]. AAPG Bull, 2007, 91(4): 475–499.
[2] 邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641–653.
Zou Cai-neng, Dong Da-zhong, Wang She-jiao, Li Jian-zhong, Li Xin-jing, Wang Yu-man, Li Deng-hua, Cheng Ke-ming. Geological characteristics and resource potential of shale gas in China [J]. Pet Explor Develop, 2010, 37(6): 641–653 (in Chinese with English abstract).
[3] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129–136.
Jia Cheng-zao, Zheng Min, Zhang Yong-feng. Unconventional hydrocarbon resources in China and the prospect of exploration and development [J]. Pet Explor Develop, 2012, 39(2): 139–146 (in Chinese with English abstract).
[4] 肖贤明, 宋之光, 朱炎铭, 田辉, 尹宏伟. 北美页岩气研究及对我国下古生界页岩气开发的启示[J]. 煤炭学报, 2013, 38(5): 721–727.
Xiao Xian-ming, Song Zhi-guang, Zhu Yan-ming, Tian Hui, Yin Hong-wei. Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area [J]. J China Coal Soc, 2013, 38(5): 721–727 (in Chinese with English abstract).
[5] Fang H, Zou H Y, Lu Y C. Mechanisms of shale gas storage: Implications for shale gas exploration in China [J]. AAPG Bull, 2013, 97(8): 1325–1346.
[6] Loucks R G, Reed R M, Ruppel S C, Jarvie D M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale [J]. J Sediment Res, 2009, 79(12): 848–861.
[7] Mastalerz M, Schimmelmann A, Drobniak A, Chen Y Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion [J]. AAPG Bull, 2013, 97(10): 1621–1643.
[8] Klaver J, Desbois G, Littke R, Urai Janos L. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales [J]. Mar Pet Geol, 2015, 59: 451–466.
[9] Milliken K L, Rudnicki M, Awwiller D N, Zhang T W. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania [J]. AAPG Bull, 2013, 97(2): 177–200.
[10] Curtis M E, Cardott B J, Sondergeld C H, Rai C S. Development of organic porosity in the Woodford Shale with increasing thermal maturity [J]. Int J Coal Geol, 2012, 103: 26–31.
[11] 郭秋麟, 陈晓明, 宋焕琪, 郑曼, 黄金亮, 陈宁生, 高日丽. 泥页岩埋藏过程孔隙度演化与预测模型探讨[J]. 天然气地球科学, 2013, 24(3): 439–449.
Guo Qiu-lin, Chen Xiao-ming, Song Huan-qi, Zheng Man, Huang Jin-liang, Chen Ning-sheng, Gao Ri-li. Evolution and models of shale porosity during burial process [J]. Nat Gas Geosci, 2013, 24(3): 439–449 (in Chinese with English abstract).
[12] Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas [J]. AAPG Bull, 2015, 99(9): 1713–1744.
[13] 吉利明, 马向贤, 夏燕青, 邱军利. 黏土矿物甲烷吸附性能与微孔隙体积关系[J]. 天然气地球科学, 2014, 25(2): 141– 152.
Ji Li-ming, Ma Xiang-xian, Xia Yan-qing, Qiu Jun-li. Relationship between methane adsorption capacity of clay minerals and micropore volume [J]. Nat Gas Geosci, 2014, 25(2): 141–152 (in Chinese with English abstract).
[14] Chen J, Xiao X M. Evolution of nanoporosity in organic-rich shales during thermal maturation [J]. Fuel, 2014, 129: 173– 181.
[15] Ko L T, Loucks R G, Zhang T W, Ruppel S C, Shao D Y. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments [J]. AAPG Bull, 2016, 100(11): 1693– 1722.
[16] 吉利明, 吴远东, 贺聪, 苏龙. 富有机质泥页岩高压生烃模拟与孔隙演化特征[J]. 石油学报, 2016, 37(2): 172–181.
Ji Li-ming, Wu Yuan-dong, He Cong, Su Long. High pressure simulation of organic rich mudstone and shale for hydrocarbon generation and pore system evolution [J]. Acta Pet Sinica, 2016, 37(2): 172–181 (in Chinese with English abstract).
[17] Hu H Y, Zhang T W, Wiggins-Camacho J D, Ellis G S, Lewan M D, Zhang X L. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis [J]. Mar Pet Geol, 2015, 59: 114–128.
[18] Sun L N, Tuo J C, Zhang M F, Wu C J, Wang Z X, Zheng Y W. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis [J]. Fuel, 2015, 158: 549–557.
[19] Tang X, Zhang J C, Jin Z J, Xiong J Y, Lin L M, Yu Y X, Han S B. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin [J]. Mar Pet Geol, 2015, 64: 165–172.
[20] 崔景伟, 朱如凯, 崔京钢. 页岩孔隙演化及其与残留烃量的关系: 来自地质过程约束下模拟实验的证据[J]. 地质学报, 2013, 87(5): 730–736.
Cui Jing-wei, Zhu Ru-kai, Cui Jing-gang. Relationship of porous evolution and residual hydrocarbon: Evidence from modeling experiment with geological constrains [J]. Acta Geol Sinica, 2013, 87(5): 730–736 (in Chinese with English abstract).
[21] Guo H J, Jia W L, Peng P A, Zeng J, He R L. Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis: A study of the Yanchang Shale with Type Ⅱ kerogen [J]. Org Geochem, 2017, 105: 56–66.
[22] 傅家谟, 徐芬芳, 陈德玉, 刘德汉, 胡成一, 贾蓉芬, 徐世平. 茂名油页岩中生物输入的标志化合物[J]. 地球化学, 1985, 14(2): 99–114.
Fu Jia-mo, Xu Fen-fang, Chen De-yu, Liu De-han, Hu Cheng-yi, Jia Rong-fen, Xu Shi-ping. Biomarker compounds of biological inputs in Maoming oil shale [J]. Geochimica, 1985, 14(2): 99–114 (in Chinese with English abstract).
[23] 刘康林, 吴熙纯, 刘树根, 林杰, 李金玺. 川西北地区上二叠统长兴组、大隆组沉积特征研究[J]. 岩性油气藏, 2011, 23(2): 30–34.
Liu Kang-lin, Wu Xi-chun, Liu Shu-gen, Lin Jie, Li Jin-xi. Sedimentary characteristics of Upper Permian Changxing and Dalong Formation in northwestern Sichuan Basin [J]. Litho?l Reserv, 2011, 23(2): 30–34 (in Chinese with English abstract).
[24] Tiwari P, Deo M, Lin C L, Miller J D. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT [J]. Fuel, 2013, 107: 547–554.
[25] Kuila U, Mccarty D K, Derkowski A, Fischer T B, Topór T, Prasad M. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks [J]. Fuel, 2014, 135(6): 359–373.
[26] Mikutta R, Kleber M, Kaiser K, Jahn R. Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate [J]. Soil Sci Soc Am J, 2005, 69(1): 120–135.
[27] Sandvik E I, Young W A, Curry D J. Expulsion from hydrocarbon sources: The role of organic absorption [J]. Org Geochem, 1992, 19(1–3): 77–87.
[28] Xiong Y Q, Jiang W M, Wang X T, Li Y, Chen Y, Zhang L, Lei R, Peng P A. Formation and evolution of solid bitumen during oil cracking [J]. Mar Pet Geol, 2016, 78: 70–75.
[29] Lewan M D. Experiments on the role of water in petroleum formation [J]. Geochim Cosmochim Acta, 1997, 61: 3691– 3723.
[30] Gasparini E, Tarantino S C, Ghigna P, Riccardi M P, Cedillo- González E I, Siligardi C, Zema M. Thermal dehydroxylation of kaolinite under isothermal conditions [J]. Appl Clay Sci, 2013, 80–81: 417–425.
[31] Chéret R. Thermal decomposition of calcite: Mechanisms of formation and textural evolution of Cao nanocrystals [J]. Am Mineral, 2009, 94(4): 578–593.
[32] Sing Kenneth S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure Appl Chem, 1985, 57(4): 603–619.
[33] Tian H, Pan L, Zhang T W, Xiao X M, Meng Z P, Huang B J. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China [J]. Mar Petrol Geol, 2015, 62: 28–43.
[34] Cao T T, Song Z G, Wang S B, Xia J. A comparative study of the specific surface area and pore structure of different shales and their kerogens [J]. Sci China Earth Sci, 2015, 58(4): 510– 522.
[35] Kuila U, Prasad M. Specific surface area and pore-size distri?bution in clays and shales [J]. Geophys Prospect, 2013, 61(2): 341–362.
[36] Vidal O, Dubacq B. Thermodynamic modelling of clay dehyd?ration, stability and compositional evolution with temperature, pressure and H2O activity [J]. Geochim Cosmochim Acta, 2009, 73(21): 6544–6564.
[37] Wei L, Mastalerz M, Schimmelmann A, Chen Y Y. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales [J]. Int J Coal Geol, 2014, 132: 38–50.
[38] 郭慧娟, 王香增, 张丽霞, 姜呈馥, 贾望鲁, 彭平安, 雷裕红, 罗晓容, 程明. 抽提前/后成熟页岩对氮气、二氧化碳的吸附特征及其对孔隙研究的意义[J]. 地球化学, 2014, 43(4): 408–414.
Guo Hui-juan, Wang Xiang-zeng, Zhang Li-xia, Jiang Cheng-fu, Jia Wang-lu, Peng Ping-an, Lei Yu-hong, Luo Xiao-rong, Cheng Ming. Adsorption of N2 and CO2 on mature shales before and after extraction and its implication for investigations of pore structures [J]. Geochimica, 2014, 43(4): 408–414 (in Chinese with English abstract).
[39] Valenza J J, Drenzek N, Marques F, Pagels M, Mastalerz M. Geochemical controls on shale microstructure [J]. Geology, 2013, 41(5): 611–614.
[40] Fishman N, Guthrie J, Honarpour M. The stratigraphic distribution of hydrocarbon storage and its effect on producible hydrocarbons in the Eagle Ford Formation, South Texas [C] // Unconventional Resources Technology Conference, 2013: 1540–1545.
[41] Bernard S, Wirth R, Schreiber A, Schulz H M, Horsfield B. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin) [J]. Inte J Coal Geol, 2012, 103: 3–11.
[42] Michels R, Burkle V, Mansuy L, Langlois E, Ruau O, Landais P. Role of polar compounds as source of hydrocarbons and reactive medium during the artificial maturation of Mahakam coal [J]. Energ Fuel, 2000, 14(5): 1059–1071.

备注/Memo

收稿日期(Received): 2018-01-15; 改回日期(Revised): 2018-03-17; 接受日期(Accepted): 2018-04-08
基金项目: 中国科学院战略性先导科技专项B类(XDB10010204); 中国科学院广州地球化学研究所“一三五”项目(135TP201602)
作者简介: 贺儒良(1993–), 男, 硕士研究生, 油气地球化学专业。E-mail: heruliang@gig.ac.cn
* 通讯作者(Corresponding author): JIA Wang-lu, E-mail: wljia@gig.ac.cn; Tel: +86-20-85291312

更新日期/Last Update: 2018-09-30