PDF下载 分享
[1]王 欢,姚军明*,李 杰.钼同位素地球化学研究进展及其在成矿作用研究中的应用潜力[J].地球化学,2019,48(03):213-229.[doi:10.19700/j.0379-1726.2019.03.001]
 WANG Huan,YAO Jun-ming* and LI Jie.A review of progress in molybdenum isotope geochemistry and its potential application in mineralization research[J].Geochimica,2019,48(03):213-229.[doi:10.19700/j.0379-1726.2019.03.001]
点击复制

钼同位素地球化学研究进展及其在成矿作用研究中的应用潜力

参考文献/References:

[1] Anbar A D, Knab K A, Barling J. Precise determination of mass-dependent variations in the isotopic composition of moly?bdenum using MC-ICP-MS[J]. Anal Chem, 2001, 73(7): 1425-1431.
[2] Siebert C, N?gler T F, von Blanckenburg F, Kramers J D. Molybdenum isotope records as a potential new proxy for paleoceanography[J]. Earth Planet Sci Lett, 2003, 211(1/2): 159-171.
[3] Maréchal C N, Télouk P, Albarède F. Precise analysis of cop-per and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chem Geol, 1999, 156(1): 251-273.
[4] Zhu X K, O'nions R K, Guo Y, Belshaw N S, Rickard D. Determination of natural Cu-isotope variation by plasma- source mass spectrometry: Implications for use as geochemical tracers[J]. Chem Geol, 2000, 163(1-4): 139-149.
[5] Anbar A D, Roe J, Barling J, Nealson K. Nonbiological fractionation of iron isotopes[J]. Science, 2000, 288(5463): 126-128.
[6] Archer C, Vance D, Butler I. Abiotic Zn isotope fractionations associated with ZnS precipitation[J]. Geochim Cosmochim Acta, 2004, 68(11): A325.
[7] Anbar A D. Molybdenum stable isotopes: Observations, interpretations and directions[J]. Rev Miner Geochem, 2004, 55: 429-454.
[8] Pearce C R, Cohen A S, Coe A L, Burton K W. Molybdenum isotope evidence for global ocean anoxia coupled with per-turbations to the carbon cycle during the Early Jurassic[J]. Geology, 2008, 36(3): 231.
[9] Gordon G, Lyons T, Arnold G L, Roe J, Sageman B, Anbar A D. When do black shales tell molybdenum isotope tales?[J]. Geology, 2009, 37(6): 535-538.
[10] Wen H J, Carignan J, Zhang Y X, Fan H F, Cloquet C, Liu S R. Molybdenum isotopic records across the Precam-brian-Cambrian boundary[J]. Geology, 2011, 39(8): 775-778.
[11] Czaja A D, Johnson C M, Roden E E, Beard B L, Voegelin A R, N?gler T F, Beukes N J, Wille M. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation[J]. Geochim Cosmochim Acta, 2012, 86: 118-137.
[12] Helz G, Miller C, Charnock J, Mosselmans J, Pattrick R, Garner C, Vaughan D. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochim Cosmochim Acta, 1996, 60(19): 3631- 3642.
[13] Kendall B, Creaser R A, Gordon G W, Anbar A D. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochim Cosmochim Acta, 2009, 73(9): 2534-2558.
[14] Kurzweil F, Drost K, Pa?ava J, Wille M, Taubald H, Schoeckle D, Schoenberg R. Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran[J]. Geochim Cosmochim Acta, 2015, 171: 121-142.
[15] Kurzweil F, Wille M, Schoenberg R, Taubald H, Van Kranen-donk M J. Continuously increasing δ98Mo values in Neoarc-hean black shales and iron formations from the Hamersley Basin[J]. Geochim Cosmochim Acta, 2015, 164: 523-542.
[16] Lehmann B, N?gler T F, Holland H D, Wille M, Mao J, Pan J, Ma D, Dulski P. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology, 2007, 35(5): 403.
[17] Liermann L J, Mathur R, Wasylenki L E, Nuester J, Anbar A D, Brantley S L. Extent and isotopic composition of Fe and Mo release from two Pennsylvania shales in the presence of organic ligands and bacteria[J]. Chem Geol, 2011, 281(3): 167-180.
[18] Wille M, Kramers J D, N?gler T F, Beukes N, Schr?der S, Meisel T, Lacassie J, Voegelin A. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales[J]. Geochim Cosmochim Acta, 2007, 71(10): 2417-2435.
[19] Wille M, Nebel O, Van Kranendonk M J, Schoenberg R, Kleinhanns I C, Ellwood M J. Mo-Cr isotope evidence for a reducing Archean atmosphere in 3.46-2.76 Ga black shales from the Pilbara, Western Australia[J]. Chem Geol, 2013, 340: 68-76.
[20] Lehmann B, Frei R, Xu L, Mao J. Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform, China: Reconnaissance chromium isotope data and a refined metallogenic model[J]. Econ Geol, 2016, 111(1): 89-103.
[21] Arnold G L, Anbar A D, Barling J, Lyons T W. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans[J]. Science, 2004, 304(5667): 87-90.
[22] Zhou L, Wignall P B, Su J, Feng Q, Xie S, Zhao L, Huang J. U/Mo ratios and δ98/95Mo as local and global redox proxies during mass extinction events[J]. Chem Geol, 2012, 324/325: 99-107.
[23] Xu L G, Lehmann B, Mao J W, N?gler T F, Neubert N, B?ttcher M E, Escher P. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment[J]. Chem Geol, 2012, 318/319: 45-59.
[24] Xu L G, Mao J W, Lehmann B. A genesis model for the black shale-hosted polymetallic Ni-Mo-(PGE-Au) sulfides in south China: Application of Mo isotopes[C]. Sweden: Springer Press, 2013: 644-647.
[25] Dickson A J, Gill B C, Ruhl M, Jenkyns H C, Porcelli D, Idiz E, Lyons T W, van den Boorn S H J M. Molybdenum-isotope chemostratigraphy and paleoceanography of the Toarcian Oceanic Anoxic Event (Early Jurassic)[J]. Paleoceanography, 2017, 32(8): 813-829.
[26] Ruebsam W, Dickson A J, Hoyer E-M, Schwark L. Multiproxy reconstruction of oceanographic conditions in the southern epeiric Kupferschiefer Sea (Late Permian) based on re-dox-sensitive trace elements, molybdenum isotopes and biomarkers[J]. Gondw Res, 2017, 44: 205-218.
[27] Goldberg T, Poulton S W, Wagner T, Kolonic S F, Rehk?mper M. Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2[J]. Earth Planet Sci Lett, 2016, 440: 81-91.
[28] Dickson A J, Jenkyns H C, Porcelli D, Van Den Boorn S, Idiz E. Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous)[J]. Geochim Cosmochim Acta, 2016, 178: 291-306.
[29] Hannah J L, Stein H J, Wieser M E, de Laeter J R, Varner M D. Molybdenum isotope variations in molybdenite: Vapor transport and Rayleigh fractionation of Mo[J]. Geology, 2007, 35(8): 703-706.
[30] Mathur R, Brantley S, Anbar A, Munizaga F, Maksaev V, Newberry R, Vervoort J, Hart G. Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore de-posits[J]. Miner Deposita, 2010, 45(1): 43-50.
[31] Wang Y, Zhou L, Gao S, Li J W, Hu Z F, Yang L, Hu Z-C. Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan plateau and its implications[J]. Miner Deposita, 2016, 51(2): 201-210.
[32] Greber N D, Pettke T, N?gler T F. Magmatic-hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature [J]. Lithos, 2014, 190/191: 104-110.
[33] Shafiei B, Shamanian G, Mathur R, Mirnejad H. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems[J]. Miner Deposita, 2015, 50(3): 281-291.
[34] Breillat N, Guerrot C, Marcoux E, Négrel P. A new global da-tabase of δ98Mo in molybdenites: A literature review and new data[J]. J Geochem Explor, 2016, 161: 1-15.
[35] Yao J M, Mathur R, Sun W D, Song W L, Chen H Y, Mutti L, Xiang X K, Luo X H. Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field[J]. Geochem Geophys Geosyst, 2016, 17(5): 1725- 1739.
[36] Greber N D, Hofmann B A, Voegelin A R, Villa I M, N?gler T F. Mo isotope composition in Mo-rich high- and low-T hy-drothermal systems from the Swiss Alps[J]. Geochim Cos-mochim Acta, 2011, 75(21): 6600-6609.
[37] Mathur R, Dendas M, Titley S, Phillips A. Patterns in the copper isotope composition of minerals in porphyry copper deposits in southwestern United States[J]. Econ Geol, 2010, 105: 1457-1467.
[38] 朱建明, 朱祥坤, 黄方. 钼的稳定同位素体系及其地质应用[J]. 岩石矿物学杂志, 2008, 27(4): 353-360.
Zhu Jian-ming, Zhu Xiang-kun, Huang Fang. The systematics of molybdenum stable isotope and its application to earth science[J]. Acta Petrol Miner, 2008, 27(4): 353-360 (in Chi-nese with English abstract).
[39] 张羽旭, 温汉捷, 樊海峰. Mo稳定同位素研究进展[J]. 岩石矿物学杂志, 2008, 27(5): 457-464.
Zhang Yu-xu, Wen Han-jie, Fan Hai-feng. Advances in the study of Mo stable isotope geochemistry[J]. Acta Petrol Miner, 2008, 27(5): 457-464 (in Chinese with English abstract).
[40] 徐林刚, Lehmann B. 钼及钼同位素地球化学——同位素体系、测试技术及在地质中的应用[J]. 矿床地质, 2011, 30(1): 103-124.
Xu Lin-gang, Lehmann B. Mo and Mo stable isotope geo-chemistry: Isotope system, analytical technique and applica-tions to geology[J]. Miner Deposits, 2011, 30(1): 103-124 (in Chinese with English abstract).
[41] Kendall B, Dahl T W, Anbar A D. The stable isotope geoche-mistry of molybdenum[J]. Rev Miner Geochem, 2017, 82(1): 683-732.
[42] Mayer A J, Wieser M E. The absolute isotopic composition and atomic weight of molybdenum in SRM 3134 using an isotopic double-spike[J]. J Anal Atomic Spectrom, 2014, 29(1): 85-94.
[43] Erickson B E, Helz G R. Molybdenum (VI) speciation in sulfidic waters: Stability and lability of thiomolybdate[J]. Geochim Cosmochim Acta, 2000, 64(7): 1149-1158.
[44] Palme H, O’Neill H St C. Cosmochemical estimates of mantle composition[M]//Holland H D, Turekian K K. Treatise on Geochemistry: Volume 3. 2nd Ed. Oxford: Elsevier, 2014: 1-39.
[45] Rudnick R L, Gao S. Composition of the continental crust[M]// Holland H D, Turekian K K. Treatise on Geochemistry: Volume 4. 2nd Ed. Oxford: Elsevier, 2014: 1-51.
[46] Bruland K W. Trace elements in the seawater[M]// Riley J P, Chester R. Chemical Oceanography. London: Academic Press, 1983: 157-221.
[47] Collier R W. Molybdenum in the northeast Pacific Ocean[J]. Limnol Oceanogr, 1985, 30(6): 1351-1354.
[48] Miller C A, Peucker-Ehrenbrink B, Walker B D, Marcantonio F. Re-assessing the surface cycling of molybdenum and rhe-nium[J]. Geochim Cosmochim Acta, 2011, 75(22): 7146- 7179.
[49] McManus J, Siebert C, Hammond D E, Wheat C G, N?gler T F. Oceanic molybdenum isotope fractionation: Diagenesis and hydrothermal ridge-flank alteration[J]. Geochem Geophys Geosyst, 2002, 3(12): 1-9.
[50] Goldberg T, Archer C, Vance D, Poulton S W. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides[J]. Geochim Cosmochim Acta, 2009, 73(21): 6502-6516.
[51] Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Econ Geol, 2005, 100(5): 801-818.
[52] Goldberg T, Gordon G, Izon G, Archer C, Pearce C R, Mcma-nus J, Anbar A D, Rehk?mper M. Resolution of inter-laboratory discrepancies in Mo isotope data: An intercalibration[J]. J Anal Atomic Spectrom, 2013, 28(5): 724-735.
[53] N?gler T F, Anbar A D, Archer C, Goldberg T, Gordon G W, Greber N D, Siebert C, Sohrin Y, Vance D. Proposal for an international molybdenum isotope measurement standard and data representation[J]. Geostand Geoanal Res, 2014, 38(2): 149-151.
[54] Greber N D, Siebert C, N?gler T F, Pettke T. δ98/95Mo values and molybdenum concentration data for NIST SRM 610, 612 and 3134: Towards a common protocol for reporting Mo data[J]. Geostand Geoanal Res, 2012, 36(3): 291-300.
[55] Zhao P P, Li J, Zhang L, Wang Z B, Kong D X, Ma J L, Wei G J, Xu J F. Molybdenum mass fractions and isotopic compo-sitions of international geological reference materials[J]. Geostand Geoanal Res, 2016, 40(2): 217-226.
[56] Malinovsky D, Rodushkin I, Baxter D C, Ingri J, ?hlander B. Molybdenum isotope ratio measurements on geological samples by MC-ICPMS[J]. Int J Mass Spectrom, 2005, 245(1-3): 94-107.
[57] Barling J, Anbar A D. Molybdenum isotope fractionation during adsorption by manganese oxides[J]. Earth Planet Sci Lett, 2004, 217(3/4): 315-329.
[58] Pietruszka A J, Walker R J, Candela P A. Determination of mass-dependent molybdenum isotopic variations by MC-ICP- MS: An evaluation of matrix effects[J]. Chem Geol, 2006, 225(1/2): 121-136.
[59] Willbold M, Hibbert K, Lai Y-J, Freymuth H, Hin R C, Coath C, Vils F, Elliott T. High-precision mass-dependent molybdenum isotope variations in magmatic rocks determined by dou-ble-spike MC-ICP-MS[J]. Geostand Geoanal Res, 2015, 40(3): 389-403.
[60] Li J, Liang X R, Zhong L F, Wang X C, Ren Z Y, Sun S L, Zhang Z F, Xu J F. Measurement of the isotopic composition of molybdenum in geological samples by MC-ICP-MS using a novel chromatographic extraction technique[J]. Geostand Geoanal Res, 2014, 38(3): 345-354.
[61] Murthy V R. Isotopic anomalies of molybdenum in some iron meteorites[J]. J Geophys Res, 1962, 67(2): 905-907.
[62] Murthy V R. Elemental and isotopic abundances of molybdenum in some meteorites[J]. Geochim Cosmochim Acta, 1963, 27(11): 1171-1178.
[63] Crouch E, Tuplin T. Isotopic composition and the atomic weight of naturally occurring molybdenum: A possible re-flexion of the creation process[J]. Nature, 1964, 202(4939): 1282-1284.
[64] Longerich H, Fryer B, Strong D. Determination of lead isotope ratios by inductively coupled plasma-mass spectrometry (ICP- MS)[J]. Spectrochim Acta, Part B, 1987, 42(1/2): 39-48.
[65] Duan Y, Anbar A D, Arnold G L, Lyons T W, Gordon G W, Kendall B. Molybdenum isotope evidence for mild environ-mental oxygenation before the Great Oxidation Event[J]. Geochim Cosmochim Acta, 2010, 74(23): 6655-6668.
[66] Wetherill G. Isotopic composition and concentration of mo-ly?b?denum in iron meteorites[J]. J Geophys Res, 1964, 69(20): 4403-4408.
[67] Siebert C, N?gler T F, Kramers J D. Determination of Mo isotope fractionation by double-spike multicollector induc-tively coupled plasma mass spectrometry[J]. Geochem Geo-phy Geosy, 2001, 2(7): 2000GC000124.
[68] Skierszkan E, Amini M, Weis D. A practical guide for the de-sign and implementation of the double-spike technique for precise determination of molybdenum isotope compositions of environmental samples[J]. Anal Bioanal Chem, 2015, 407(7): 1925-1935.
[69] Nagai Y, Yokoyama T. Molybdenum isotopic analysis by negative thermal ionization mass spectrometry (N-TIMS): Effects on oxygen isotopic composition[J]. J Anal Atomic Spectrom, 2016, 31(4): 948-960.
[70] Wasylenki L E, Weeks C L, Bargar J R, Spiro T G, Hein J R, Anbar A D. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite[J]. Geochim Cosmochim Acta, 2011, 75(17): 5019-5031.
[71] N?gler T F, Neubert N, B?ttcher M, Dellwig O, Schnetger B. Molybdenum isotope fractionation in pelagic euxinia: Evi-dence from the modern Black and Baltic Seas[J]. Chem Geol, 2011, 289(1): 1-11.
[72] Tossell J A. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution[J]. Geochim Cosmochim Acta, 2005, 69(12): 2981-2993.
[73] Wasylenki L, Anbar A, Gordon G. Temperature dependence of Mo isotope fractionation during adsorption to δ-MnO2: Im-plications for the paleoredox proxy[J]. Geochim Cosmochim Acta, 2006, 70(18): A691.
[74] N?gler T F, Mills M M, Siebert C. Biological fractionation of Mo isotopes during N-2 fixation by Trichodesmium sp. IMS 101[J]. Geochim Cosmochim Acta, 2004: A364.
[75] Zerkle A L, Scheiderich K, Maresca J A, Liermann L J, Brantley S L. Molybdenum isotope fractionation by cyano-bacterial assimilation during nitrate utilization and N(2) fixa-tion[J]. Geobiology, 2011, 9(1): 94-106.
[76] Liang Y H, Halliday A N, Siebert C, Fitton J G, Burton K W, Wang K L, Harvey J. Molybdenum isotope fractionation in the mantle[J]. Geochim Cosmochim Acta, 2017, 199: 91-111.
[77] Bezard R, Fischer-G?dde M, Hamelin C, Brennecka G A, Kleine T. The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts[J]. Earth Planet Sci Lett, 2016, 453: 171-181.
[78] Cheng M, Li C, Zhou L, Algeo T J, Zhang F, Romaniello S, Jin C S, Lei L D, Feng L J, Jiang S Y. Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters: A case study of the lower Cambrian Niutitang shales, South China[J]. Geochim Cosmochim Acta, 2016, 183: 79-93.
[79] K?nig S, Wille M, Voegelin A, Schoenberg R. Molybdenum isotope systematics in subduction zones[J]. Earth Planet Sci Lett, 2016, 447: 95-102.
[80] Skierszkan E K, Mayer K U, Weis D, Beckie R D. Molybde-num and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru[J]. Sci Total Environ, 2016, 550: 103-113.
[81] Zhou L, Algeo T J, Shen J, Hu Z, Gong H, Xie S, Huang J, Gao S. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J]. Palaeo-geogr Palaeoclimatol Palaeoecol, 2015, 420: 223-234.
[82] Wen H J, Fan H F, Zhang Y X, Cloquet C, Carignan J. Recon-struction of early Cambrian ocean chemistry from Mo iso-topes[J]. Geochim Cosmochim Acta, 2015, 164: 1-16.
[83] Wang Z B, Ma J L, Li J, Wei G J, Chen X F, Deng W F, Xie L H, Lu W J, Zou L. Chemical weathering controls on variations in the molybdenum isotopic composition of river water: Evi-dence from large rivers in China[J]. Chem Geol, 2015, 410: 201-212.
[84] Ventura G T, Gall L, Siebert C, Prytulak J, Szatmari P, Hürli-mann M, Halliday A N. The stable isotope composition of vanadium, nickel, and molybdenum in crude oils[J]. Appl Geochem, 2015, 59: 104-117.
[85] Siebert C, Pett-Ridge J C, Opfergelt S, Guicharnaud R A, Halliday A N, Burton K W. Molybdenum isotope fractionation in soils: Influence of redox conditions, organic matter, and atmospheric inputs[J]. Geochim Cosmochim Acta, 2015, 162: 1-24.
[86] Noordmann J, Weyer S, Montoya-Pino C, Dellwig O, Neubert N, Eckert S, Paetzel M, B?ttcher M E. Uranium and molyb-denum isotope systematics in modern euxinic basins: Case studies from the central Baltic Sea and the Kyllaren fjord (Norway)[J]. Chem Geol, 2015, 396: 182-195.
[87] Kendall B, Komiya T, Lyons T W, Bates S M, Gordon G W, Romaniello S J, Jiang G, Creaser R A, Xiao S, Mcfadden K, Sawaki Y, Tahata M, Shu D, Han J, Li Y, Chu X, Anbar A D. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Pe-riod[J]. Geochim Cosmochim Acta, 2015, 156: 173-193.
[88] Greber N D, Puchtel I S, N?gler T F, Mezger K. Komatiites constrain molybdenum isotope composition of the Earth’s mantle[J]. Earth Planet Sci Lett, 2015, 421: 129-138.
[89] Eroglu S, Schoenberg R, Wille M, Beukes N, Taubald H. Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58-2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa[J]. Precamb Res, 2015, 266: 27-46.
[90] Chen X, Ling H F, Vance D, Shields-Zhou G A, Zhu M, Poulton S W, Och L M, Jiang S Y, Li D, Cremonese L, Archer C. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nat Commun, 2015, 6(7142): 1-7.
[91] Yang J, Siebert C, Barling J, Savage P, Liang Y H, Halliday A N. Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland[J]. Geo-chim Cosmochim Acta, 2015, 162: 126-136.
[92] Voegelin A R, Pettke T, Greber N D, von Niederh?usern B, N?gler T F. Magma differentiation fractionates Mo isotope ratios: Evidence from the Kos Plateau Tuff (Aegean Arc)[J]. Lithos, 2014, 190/191: 440-448.
[93] Dickson A J, Cohen A S, Coe A L. Continental margin mo-lybdenum isotope signatures from the early Eocene[J]. Earth Planet Sci Lett, 2014, 404: 389-395.
[94] Rahaman W, Goswami V, Singh S K, Rai V K. Molybdenum isotopes in two Indian estuaries: Mixing characteristics and input to oceans[J]. Geochim Cosmochim Acta, 2014, 141: 407-422.
[95] Burkhardt C, Hin R C, Kleine T, Bourdon B. Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation[J]. Earth Planet Sci Lett, 2014, 391: 201-211.
[96] Azrieli-Tal I, Matthews A, Bar-Matthews M, Almogi-Labin A, Vance D, Archer C, Teutsch N. Evidence from molybdenum and iron isotopes and molybdenum-uranium covariation for sulphidic bottom waters during Eastern Mediterranean sapropel S1 formation[J]. Earth Planet Sci Lett, 2014, 393: 231-242.
[97] Hin R C, Burkhardt C, Schmidt M W, Bourdon B, Kleine T. Experimental evidence for Mo isotope fractionation between metal and silicate liquids[J]. Earth Planet Sci Lett, 2013, 379: 38-48.
[98] Xu L G, Lehmann B, Mao J W. Seawater contribution to po-lymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: Evidence from Mo isotope, PGE, trace element, and REE geochemistry[J]. Ore Geol Rev, 2013, 52: 66-84.
[99] Voegelin A R, N?gler T F, Pettke T, Neubert N, Steinmann M, Pourret O, Villa I M. The impact of igneous bedrock wea-thering on the Mo isotopic composition of stream waters: Natural samples and laboratory experiments[J]. Geochim Cosmochim Acta, 2012, 86: 150-165.
[100] Dickson A J, Cohen A S. A molybdenum isotope record of Eocene Thermal Maximum 2: Implications for global ocean redox during the early Eocene[J]. Paleoceanography, 2012, 27(3): 1-9.
[101] Arnold G L, Lyons T W, Gordon G W, Anbar A D. Extreme change in sulfide concentrations in the Black Sea during the Little Ice Age reconstructed using molybdenum isotopes[J]. Geology, 2012, 40(7): 595-598.
[102] Dahl T W, Canfield D E, Rosing M T, Frei R E, Gordon G W, Knoll A H, Anbar A D. Molybdenum evidence for expansive sulfidic water masses in ~750 Ma oceans[J]. Earth Planet Sci Lett, 2011, 311(3/4): 264-274.
[103] Neubert N, Heri A R, Voegelin A R, N?gler T F, Schlunegger F, Villa I M. The molybdenum isotopic composition in river water: Constraints from small catchments[J]. Earth Planet Sci Lett, 2011, 304(1/2): 180-190.
[104] Song S M, Hu K, Wen H J, Zhang Y X, Li K, Fan H F. Mo-lybdenum isotopic composition as a tracer for low-medium temperature hydrothermal ore-forming systems: A case study on the Dajiangping pyrite deposit, western Guangdong Prov-ince, China[J]. Chinese Sci Bull, 2011, 56(21): 2221-2228.
[105] Scheiderich K, Helz G R, Walker R J. Century-long record of Mo isotopic composition in sediments of a seasonally anoxic estuary (Chesapeake Bay)[J]. Earth Planet Sci Lett, 2010, 289(1/2): 189-197.
[106] Scheiderich K, Zerkle A L, Helz G R, Farquhar J, Walker R J. Molybdenum isotope, multiple sulfur isotope, and re-dox-sensitive element behavior in early Pleistocene Mediter-ranean sapropels[J]. Chem Geol, 2010, 279(3/4): 134-144.
[107] Voegelin A R, N?gler T F, Beukes N J, Lacassie J P. Molyb-denum isotopes in late Archean carbonate rocks: Implications for early Earth oxygenation[J]. Precamb Res, 2010, 182(1/2): 70-82.
[108] Poulson Brucker R L, Mcmanus J, Severmann S, Berelson W M. Molybdenum behavior during early diagenesis: Insights from Mo isotopes[J]. Geochem Geophys Geosyst, 2009, 10(6): 1-25.
[109] Voegelin A R, N?gler T F, Samankassou E, Villa I M. Molyb-denum isotopic composition of modern and Carboniferous carbonates[J]. Chem Geol, 2009, 265(3/4): 488-498.
[110] Malinovsky D, Hammarlund D, Ilyashuk B, Martinsson O, Gelting J. Variations in the isotopic composition of molybdenum in freshwater lake systems[J]. Chem Geol, 2007, 236(3/4): 181-198.
[111] Poulson R L, Siebert C, Mcmanus J, Berelson W M. Authi-genic molybdenum isotope signatures in marine sediments[J]. Geology, 2006, 34(8): 617-620.
[112] Siebert C, Kramers J D, Meisel T, Morel P, N?gler T F. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth[J]. Geochim Cosmochim Acta, 2005, 69(7): 1787-1801.
[113] N?gler T F, Siebert C, Lüschen H, B?ttcher M E. Sedimentary Mo isotope record across the Holocene fresh-brackish water transition of the Black Sea[J]. Chem Geol, 2005, 219(1-4): 283-295.
[114] Wieser M E, de Laeter J R. A preliminary study of isotope fractionation in molybdenites[J]. Int J Mass Spectrom, 2003, 225(2): 177-183.
[115] Barling J, Arnold G L, Anbar A D. Natural mass-dependent variations in the isotopic composition of molybdenum[J]. Earth Planet Sci Lett, 2001, 193(3/4): 447-457.
[116] Dauphas N, Marty B, Reisberg L. Molybdenum evidence for inherited planetary scale isotope heterogeneity of the proto-solar nebula[J]. Astrophys J, 2002, 565(1): 640-644.
[117] Dauphas N, Marty B, Reisberg L. Molybdenum nucleosyn-thetic dichotomy revealed in primitive meteorites[J]. Astro-phys J Lett, 2002, 569(2): L139.
[118] Dauphas N, Davis A M, Marty B, Reisberg L. The cosmic molybdenum-ruthenium isotope correlation[J]. Earth Planet Sci Lett, 2004, 226(3): 465-475.
[119] Yin Q, Jacobsen S B, Yamashita K. Diverse supernova sources of pre-solar material inferred from molybdenum isotopes in meteorites[J]. Nature, 2002, 415(6874): 881-883.
[120] Chen J H, Papanastassiou D A, Wasserburg G J, Ngo H H. Endemic Mo Isotopic Anomalies in Iron and Carbonaceous Meteorites[J]. Lunar Planet Sci, 2004, XXXV: 1431.
[121] Burkhardt C, Kleine T, Oberli F, Pack A, Bourdon B, Wieler R. Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth[J]. Earth Planet Sci Lett, 2011, 312(3/4): 390-400.
[122] Burkhardt C, Kleine T, Dauphas N, Wieler R. Origin of iso-topic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust[J]. Earth Planet Sci Lett, 2012, 357/358: 298-307.
[123] Budde G, Burkhardt C, Brennecka G A, Fischer-G?dde M, Kruijer T S, Kleine T. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbo-naceous and non-carbonaceous meteorites[J]. Earth Planet Sci Lett, 2016, 454: 293-303.
[124] Willbold M, Elliott T. Molybdenum isotope variations in magmatic rocks[J]. Chem Geol, 2017, 449: 253-268.
[125] Freymuth H, Vils F, Willbold M, Taylor R N, Elliott T. Mo-lybdenum mobility and isotopic fractionation during subduction at the Mariana arc[J]. Earth Planet Sci Lett, 2015, 432: 176-186.
[126] Yang J, Barling J, Siebert C, Fietzke J, Stephens E, Halliday A N. The molybdenum isotopic compositions of I-, S- and A-type granitic suites[J]. Geochim Cosmochim Acta, 2017, 205: 168-186.
[127] Nakagawa Y, Takano S, Firdaus M L, Norisuye K, Hirata T, Vance D, Sohrin Y. The molybdenum isotopic composition of the modern ocean[J]. Geochem J, 2012, 46(2): 131-141.
[128] Wheat C G, Mottl M J, Rudnicki M. Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring[J]. Geochim Cosmochim Acta, 2002, 66(21): 3693- 3705.
[129] Reinhard C T, Planavsky N J, Robbins L J, Partin C A, Gill B C, Lalonde S V, Bekker A, Konhauser K O, Lyons T W. Pro-terozoic ocean redox and biogeochemical stasis[J]. Proc Nat Acad Sci USA, 2013, 110(14): 5357-5362.
[130] Pearce C R, Burton K W, von Strandmann P A E P, James R H, Gíslason S R. Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain[J]. Earth Planet Sci Lett, 2010, 295(1/2): 104-114.
[131] Archer C, Vance D. The isotopic signature of the global rive-rine molybdenum flux and anoxia in the ancient oceans[J]. Nat Geosci, 2008, 1: 597-600.
[132] Dahl T W, Anbar A D, Gordon G W, Rosing M T, Frei R, Canfield D E. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland[J]. Geochim Cosmochim Acta, 2010, 74(1): 144-163.
[133] Chan K, Riley J. The determination of molybdenum in natural waters, silicates and biological materials[J]. Anal Chim Acta, 1966, 36: 220-229.
[134] Wasylenki L E, Rolfe B A, Weeks C L, Spiro T G, Anbar A D. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides[J]. Geochim Cosmochim Acta, 2008, 72(24): 5997-6005.
[135] Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochim Cosmochim Acta, 1999, 63(11/12): 1735-1750.
[136] Mcmanus J, Berelson W M, Severmann S, Poulson R L, Hammond D E, Klinkhammer G P, Holm C. Molybdenum and uranium geochemistry in continental margin sediments: Pa-leoproxy potential[J]. Geochim Cosmochim Acta, 2006, 70(18): 4643-4662.
[137] Goldberg T, Archer C, Vance D, Thamdrup B, Mcanena A, Poulton S W. Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden[J]. Chem Geol, 2012, 296/297: 73-82.
[138] Scott C, Lyons T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies[J]. Chem Geol, 2012, 324/325: 19-27.
[139] Dahl T W, Chappaz A, Fitts J P, Lyons T W. Molybdenum re-duction in a sulfidic lake: Evidence from X-ray absorption fine-structure spectroscopy and implications for the Mo pa-leoproxy[J]. Geochim Cosmochim Acta, 2013, 103: 213-231.
[140] Vorlicek T P, Kahn M D, Kasuya Y, Helz G R. Capture of molybdenum in pyrite-forming sediments: Role of ligand- induced reduction by polysulfides[J]. Geochim Cosmochim Acta, 2004, 68(3): 547-556.
[141] Neubert N, N?gler T F, B?ttcher M E. Sulfidity controls mo-lybdenum isotope fractionation into euxinic sediments: Evi-dence from the modern Black Sea[J]. Geology, 2008, 36(10): 775-778.
[142] Dahl T W, Wirth S B. Molybdenum isotope fractionation and speciation in a euxinic lake: Testing ways to discern isotope fractionation processes in a sulfidic setting[J]. Chem Geol, 2017, 460: 84-92.
[143] Bura-Naki? E, Andersen M B, Archer C, De Souza G F, Margu? M, Vance D. Coupled Mo-U abundances and isotopes in a small marine euxinic basin: Constraints on processes in euxinic basins[J]. Geochim Cosmochim Acta, 2018, 222: 212-229.
[144] Scholz F, Siebert C, Dale A W, Frank M. Intense molybdenum accumulation in sediments underneath a nitrogenous water column and implications for the reconstruction of paleo-redox conditions based on molybdenum isotopes[J]. Geochim Cosmochim Acta, 2017, 213: 400-417.
[145] Segato A, Kendall B, Hanley J. Further insights into Mo isotope variations in molybdenites from different ore deposits[J]. Geol Soc Am Abstr Progr, 2015, 47(7): 243.
[146] Zajacz Z, Candela P A, Piccoli P M. The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures and its implications for the genesis of magmatic-hydrothermal ore deposits[J]. Geochim Cosmochim Acta, 2017, 207: 81-101.
[147] Ryb U, Erel Y, Matthews A, Avni Y, Gordon G W, Anbar A D. Large molybdenum isotope variations trace subsurface fluid migration along the Dead Sea transform[J]. Geology, 2009, 37(5): 463-466.
[148] Freymuth H, Elliott T, van Soest M, Skora S. Tracing sub-ducted black shales in the Lesser Antilles arc using molybdenum isotope ratios[J]. Geology, 2016, 44(12): 987-990.
[149] Mao J W, Zhang Z C, Zhang Z H, Du A. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J]. Geochim Cosmochim Acta, 1999, 63(11/12): 1815-1818.

备注/Memo

收稿日期(Received): 2018-01-13; 改回日期(Revised): 2018-03-21; 接受日期(Accepted): 2018-03-21
基金项目: 国家自然科学基金(41672079, 41372085)
作者简介: 王欢(1992-), 男, 硕士研究生, 矿物学、岩石学、矿床学专业。E-mail: wanghuan@gig.ac.cn
* 通讯作者(Corresponding author): YAO Jun-ming, E-mail: yaojunming@gig.ac.cn; Tel: +86-20-85290207

更新日期/Last Update: 2019-05-30