PDF下载 分享
[1]李建平,陈华勇*,张 婷,等.地壳浅部(低温-低压条件下)卤水-安山质火山岩作用实验研究及其地质意义[J].地球化学,2019,48(05):468-482.[doi:10.19700/j.0379-1726.2019.05.004]
 LI Jian-ping,CHEN Hua-yong*,ZHANG Ting and ZHANG Shi-tao.Experimental studies of interaction between brine and andesitic rocks at low temperature and pressure condition in shallow crust and geological implications[J].Geochimica,2019,48(05):468-482.[doi:10.19700/j.0379-1726.2019.05.004]
点击复制

地壳浅部(低温-低压条件下)卤水-安山质火山岩作用实验研究及其地质意义

参考文献/References:

[1] 丁抗.水岩作用的地球化学动力学[J].地质地球化学, 1989: 29-38.
Ding Kang.Geochemical dynamics of water-rock interaction[J].Geol Geochem, 1989: 29-38 (in Chinese).
[2] 翟裕生.关于构造-流体-成矿作用研究的几个问题[J].地学前缘, 1996, 3(3/4): 71-77.
Zhai Yu-sheng.Problems in the study of structure-fluid-ore-forming processes[J].Earth Sci Front, 1996, 3(3/4): 71-77 (in Chinese with English abstract).
[3] Lasaga A C.Chemical kinetics of water-rock interactions[J].J Geophys Res, 1984, 89(B6): 4009-4025.
[4] Lasaga A C.Fluid flow and chemical reaction kinetics in metamorphic systems: A new simple model[J].Earth Planet Sci Lett, 1989, 94(3/4): 417-424.
[5] Humphris S E, Thompson G.Hydrothermal alteration of oceanic basalts by seawater[J].Geochim Cosmochim Acta, 1978, 42(1): 107-125.
[6] Seyfried W E S, Dibble W E.Seawater-peridotite interaction at 300 ℃ and 500 bars: Implications for the origin of oceanic serpentinites[J].Geochim Cosmochim Acta, 1980, 44(2): 309-321.
[7] Bischoff J L, Dickson F W.Seawater-basalt interaction at 200 ℃ and 500 bars: Implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry[J].Earth Planet Sci Lett, 1975, 25(3): 385-397.
[8] Seyfried W E Jr, Bischoff J L.Experimental seawater-basalt interaction at 300 ℃, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals[J].Geochim Cosmochim Acta, 1981, 45(2): 135-147.
[9] Schardt C, Cooke D R, Gemmell J B, Large R R.Geochemical modeling of the zoned footwall alteration pipe, Hellyer volcanic-hosted massive sulfide deposit, Western Tasmania, Australia[J].Econ Geol, 2001, 96(5): 1037-1054.
[10] Ripley E M, Ohmoto H.Mineralogic, sulfur isotope and fluid inclusion studies of the stratabound copper deposits at the Raul Mine, Peru[J].Econ Geol, 1977, 72(6): 1017-1041.
[11] Singer D A.World-class base and precious metal deposits: A quantitative analysis[J].Econ Geol, 1995, 90(1): 88-104.
[12] Hitzman M, Kirkham R, Broughton D, Thorson J, Selley D.The sediment-hosted stratiform copper ore system[J].Econ Geol, 2005, 100: 609-644.
[13] Barton M D, Johnson D A.Evaporitic-source model for igneous-related Fe oxide (REE-Cu-Au-U) mineralization[J].Geology, 1996, 24(3): 259-262.
[14] Benavidies J, Kyser T K, Clark A H, Oates C J, Zamora R, Tarnovschi R, Castillo B.The Mantoverde iron oxide-copper-gold district, III region, Chile: The role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization[J].Econ Geol, 2007, 102(3): 415-440.
[15] Chen H Y, Kyser T K, Clark A H.Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide-Cu (-Ag-Au) deposits, south-central Perú[J].Mineral Deposita, 2011, 46(7): 677-706.
[16] Chen H Y.External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan[J].Ore Geol Rev, 2013, 51(6): 74-78.
[17] Ague J J, Brimhall G H.Geochemical modeling of steady state fluid flow and chemical reaction during supergene enrichment of porphyry copper deposits[J].Econ Geol, 1989, 84(3): 506-528.
[18] Sillitoe R H.Supergene oxidized and enriched porphyry copper and related deposits[J].Econ Geol, 2005, 100: 723-768.
[19] Gustafson A C, Williams N.Sediment-hosted stratiform deposits of copper, lead and zinc[J].Econ Geol, 1981, 75: 137-178.
[20] Leach D L, Sangster D F, Kelley K D, Ross R L, Gaven G, Allen C R.Sediment-hosted Pb-Zn deposits: A global perspective[J].Econ Geol, 2005, 100: 561-608.
[21] Oelkers E H, Golubev S V, Chairat C, Pokrovsky O S, Schott J.The surface chemistry of multi-oxide silicates[J].Geochim Cosmochim Acta, 2009, 73(16): 4617-4634.
[22] Schott J, Pokrovsky O S, Oelkers E H.The link between mineral dissolution/precipitation kinetics and solution chemistry[J].Rev Mineral Geochem, 2009, 70(1): 207-258.
[23] Hemley J J, Jones W R.Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism[J].Econ Geol, 1964, 59(4): 538-569.
[24] Oelkers E H, Schott J, Devidal J L.The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions[J].Geochim Cosmochim Acta, 1994, 58(9): 2011-2024.
[25] Gautier J M, Oelkers E H, Schott J.Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150 ℃ and pH 9[J].Geochim Cosmochim Acta, 1994, 58(21): 4549-4560.
[26] Devidal J L, Schott J, Dandurand J L.An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150 ℃, 40 bars, and pH 2, 6.8, and 7.8[J].Geochim Cosmochim Acta, 1997, 61(24): 5165-5186.
[27] Frank M R, Vaccaro D M.An experimental study of high temperature potassic alteration[J].Geochim Cosmochim Acta, 2012, 83: 195-204.
[28] 刘颖, 刘海臣, 李献华.用ICP-MS准确测定岩石样品中的40余种微量元素[J].地球化学, 1996, 25(6): 552-558.
Liu Ying, Liu Hai-chen, Li Xian-hua.Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS[J].Geochimica, 1996, 25(6): 552-558 (in Chinese with English abstract).
[29] Sun S-s, McDonough W F.Chemical and isotopic systematics of o ceanic basalts: Implications for mantle composition and processes[J].Geol Soc London Spec Publ, 1989, 42(1): 313-345.
[30] 张可清, 杨勇.蚀变岩质量平衡计算方法介绍[J].地质科技情报, 2002, 21(3): 104-107.
Zhang Ke-qing, Yang Yong.Introduction of the method for mass balance calculation in altered rocks[J].Geol Sci Technol Inf, 2002, 21(3): 104-107 (in Chinese with English abstract).
[31] Gresens R L.Composition-volume relationships of metasomatism[J].Chem Geol, 1967, 2: 47-65.
[32] Grant J A.The isocon diagram-a simple solution to Gresens’ equation for metasomatic alteration[J].Econ Geol, 1986, 81(8): 1976-1982.
[33] Brimhall G H, Dietrich W E.Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis[J].Geochim Cosmochim Acta, 1987, 51(3): 567-587.
[34] O’Hara K.Fluid flow and volume loss during mylonitization: an origin for phyllonite in an overthrust setting, North Carolina U.S.A.[J].Tectonophysics, 1988, 156(1/2): 21-36.
[35] 邓海琳, 涂光炽, 李朝阳, 刘丛强.地球化学开放系统的质量平衡: 1.理论[J].矿物学报, 1999, 19(2): 121-131.
Deng Hai-lin, Tu Guang-zhi, Li Chao-yang, Liu Cong-qiang.Mass balance of open geochemical systems: 1.Theory[J].Acta Mineral Sinica, 1999, 19(2): 121-131 (in Chinese with English abstract).
[36] MacLean W H.Mass change calculations in altered rock series[J].Mineral Deposita, 1990, 25(1): 44-49.
[37] Mottl M J, Holland H D.Chemical exchange during hydrothermal alteration of basalt by seawater-I.Experimental results for major and minor components of seawater[J].Geochim Cosmochim Acta, 1978, 42(8): 1103-1115.
[38] Gudbrandsson S, Wolff-Boenisch D, Gislason S R, Oelkers E H.An experimental study of crystalline basalt dissolution from 2≤pH≤11 and temperatures from 5 to 75 ℃[J].Geochim Cosmochim Acta, 2011, 75(19): 5496-5509.
[39] 党志, 侯瑛.玄武岩-水相互作用的溶解机理研究[J].岩石学报, 1995, 11(1): 9-15.
Dang Zhi, Hou Ying.Experimental study on the dissolution kinetic of basalt-water interaction[J].Acta Petrol Sinica, 1995, 11(1): 9-15 (in Chinese with English abstract).
[40] 刘玉山, 张桂兰.250-500 ℃, 100 MPa下海水-玄武岩反应的实验研究[J].地球化学, 1996, 25(1): 53-62.
Liu Yu-shan, Zhang Gui-lan.An experimental study on sea water-basalt interaction at 250-500 ℃ and 100 MPa[J].Geochimica, 1996, 25(1): 53-62 (in Chinese with English abstract).
[41] 胡书敏, 张荣华, 张雪彤, 苏艳丰.庐枞火山盆地玄武岩与流体相互作用[J].岩石学报, 2010, 26(9): 2681-2693.
Hu Shu-min, Zhang Rong-hua, Zhang Xue-tong, Su Yan-feng.Experimental study of water-basalt interaction in Luzong volcanic basin and applications[J].Acta Petrol Sinica, 2010, 26(9): 2681-2693 (in Chinese with English abstract).
[42] 凌其聪, 刘丛强.层控夕卡岩型矿床成矿系统的元素活动性及质量迁移——以铜陵冬瓜山铜矿床为例[J].矿物学报, 2003, 23(1): 37-44.
Lin Qi-cong, Liu Cong-qiang.Mass transfer and element mobility of ore-forming system of stratabound skarn type deposits: A case study on the Dongguashan strata-bound skarn copper deposit in Tongling, Anhui Province[J].Acta Mineral Sinica, 2003, 23(1): 37-44 (in Chinese with English abstract).
[43] 张有学.地球化学动力学[M].北京: 高等教育出版社, 2010: 1-527.
Zhang You-xue.Geochemical Kinetics[M].Beijing: Higher Education Press, 2010: 1-527 (in Chinese).
[44] Murphy W M, Oelkers E H, Lichtner P C.Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes[J].Chem Geol, 1989, 78(3/4): 357-380.
[45] 谭凯旋, 张哲儒, 王中刚.矿物溶解的表面化学动力学机理[J].矿物学报, 1994, 14(3): 207-214.
Tan Kai-xuan, Zhang Zhe-ru, Wang Zhong-gang.The mechanism of surface chemical kinetics of dissolution of minerals[J].Acta Mineral Sinica, 1994, 14(3): 207-214 (in Chinese with English abstract).
[46] Orville P M.Alkali ion exchange between vapor and feldspar phases[J].Am J Sci, 1963, 261(3): 201-237.
[47] Orville P M.Alkali metasomatism and feldspars[J].Norsk Geol Tidsskr, 1962, 42(283): e316.
[48] Sverjensky D A, Hemley J J, d'Angelo W M.Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria[J].Geochim Cosmochim Acta, 1991, 55(4): 989-1004.
[49] Frank M R, Candela P A, Piccoli P M.K-feldspar-muscovite-andalusite- quartz-brine phase equilibria: An experimental study at 25 to 60 MPa and 400 to 550 ℃[J].Geochim Cosmochim Acta, 1998, 62(23/24): 3717-3727.
[50] Frank M R, Vaccaro D M.An experimental study of high temperature potassic alteration[J].Geochim Cosmochim Acta, 2012, 83: 195-204.
[51] Barnes H L.Geochemistry of Hydrothermal Ore Deposits[M].3rd ed.New York: John Wiley, 1997: 1-977.
[52] Hellmann R.The albite-water system: Part I.The kinetics of dissolution as a function of pH at 100, 200 and 300 ℃[J].Geochim Cosmochim Acta, 1994, 58(2): 595-611.
[53] Lasaga A C, Soler J M, Ganor J.Chemical weathering rate laws and global geochemical cycles[J].Geochim Cosmochim Acta, 1994, 58(10): 2361-2386.
[54] Brantley S L, Chen Y.Chemical weathering rates of pyroxenes and amphiboles[J].Rev Mineral Geochem, 1995, 31(1): 119-172.
[55] Oelkers E H, Schott J.Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis[J].Geochim Cosmochim Acta, 1995, 59(24): 5039-5053.
[56] Casey W H, Sposito G.On the temperature dependence of mineral dissolution rates[J].Geochim Cosmochim Acta, 1992, 56(10): 3825-3830.
[57] Oelkers E H, Schott J.An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution[J].Geochim Cosmochim Acta, 2001, 65(8): 1219-1231.
[58] Lottermoser B G.Rare-earth element behaviour associated with strata-bound scheelite mineralisation (Broken Hill, Australia)[J].Chem Geol, 1989, 78(2): 119-134.
[59] Salvi S, Williams-Jones A E.The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: Evidence from fluid inclusions[J].Geochim Cosmochim Acta, 2013, 54(9): 2403-2418.
[60] Beermann O, Garbe-Sch?nberg D, Bach W, Holzheid A.Time-resolved interaction of seawater with gabbro: An experimental study of rare-earth element behavior up to 475 ℃, 100 MPa[J].Geochim Cosmochim Acta, 2017, 197: 167-192.
[61] Oreskes N, Einaudi M T.Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia[J].Econ Geol, 1990, 85(1): 1-28.
[62] Michard A, Albarède F.The REE content of some hydrothermal fluids[J].Chem Geol, 1986, 55(1/2): 51-60.
[63] Klinkhammer G P, Elderfield H, Edmond J M, Mitra A.Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J].Geochim Cosmochim Acta, 1994, 58(23): 5105-5113.
[64] Mills R A, Elderfield H.Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge[J].Geochim Cosmochim Acta, 1995, 59(17): 3511-3524.
[65] Terakado Y, Fujitani T.Behavior of the rare earth elements and other trace elements during interactions between acidic hydrothermal solutions and silicic volcanic rocks, southwestern Japan[J].Geochim Cosmochim Acta, 1998, 62(11): 1903-1917.
[66] Fournier R O, Marshall W L.Calculation of amorphous silica solubilities at 25 to 300 ℃ and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water[J].Geochim Cosmochim Acta, 1983, 47(3): 587-596.
[67] Fournier R O.Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment[J].Econ Geol, 1999, 94(8): 1193-1211.
[68] Seyfried W, Bischoff J L.Hydrothermal transport of heavy metals by seawater: The role of seawater/basalt ratio[J].Earth Planet Sci Lett, 1977, 34(1): 71-77.

备注/Memo

收稿日期(Received): 2018-10-07; 改回日期(Revised): 2018-11-09; 接受日期(Accepted): 2018-12-03 基金项目: 中国科学院战略性先导科技专项(XDB1803206); 国家杰出青年科学基金(41725009); 国家自然科学基金(41702068) 作者简介: 李建平(1992-), 男, 博士研究生, 矿物学、岩石学、矿床学专业。E-mail: lijianping@gig.ac.cn * 通讯作者(Corresponding author): CHEN Hua-yong, E-mail: huayongchen@gig.ac.cn; Tel: +86-20-85292708

更新日期/Last Update: 2019-09-30