PDF下载 分享
[1]牛琮凯、,侯读杰、*.原油含硫化合物分离及分析方法新进展[J].地球化学,2021,50(05):463-477.[doi:10.19700/j.0379-1726.2021.05.003]
 NIU Cong-kai and HOU Du-jie*.Recent advances in separation and analysis methods of sulfur compounds in crude oils[J].Geochimica,2021,50(05):463-477.[doi:10.19700/j.0379-1726.2021.05.003]
点击复制

原油含硫化合物分离及分析方法新进展

参考文献/References:

[1]Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. Berlin: Springer, 1984: 643-644.
[2]Ren L, Wu J X, Qian Q, Liu X X, Meng X H, Zhang Y H, Shi Q. Separation and characterization of sulfoxides in crude oils[J]. Energ Fuel, 2019, 33(2): 796-804.
[3]Wang M, Zhao S, Chung K H, Xu C M, Shi Q. Approach for selective separation of thiophenic and sulfidic sulfur compounds from petroleum by methylation/demethylation[J]. Anal Chem, 2015, 87(2): 1083-1088.
[4]Wang M, Zhu G Y, Ren L M, Liu X X, Zhao S Q, Shi Q. Separation and characterization of sulfur compounds in ultra-deep formation crude oils from Tarim Basin[J]. Energ Fuel, 2015, 29(8): 4842-4849.
[5]Zhang M, Xiang T S, Li B W. Carbazole-type compounds in crude oils[J]. Chinese Sci Bull, 1998, 43(8): 669-673.
[6]Han Y H, Zhang Y F, Xu C M, Hsu C S. Molecular characterization of sulfur-containing compounds in petroleum[J]. Fuel, 2018, 221: 144-158.
[7]Payzant J D, Montgomery D S, Strausz O P. Sulfides in petroleum[J]. Org Geochem, 1986, 9(6): 357-369.
[8]Payzant J D, Mojelsky T W, Strausz O P. Improved methods for the selective isolation of the sulfide and thiophenic classes of compounds from petroleum[J]. Energ Fuel, 1989, 3(4): 449-454.
[9]Hughes W B, Holba A G, Dzou L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochim Cosmochim Acta, 1995, 59(17): 3581-3598.
[10]王广利, 王铁冠, 张林晔. 济阳坳陷渤南洼陷湖相碳酸盐岩成烃特征[J]. 石油学报, 2007, 28(2): 62-68.
Wang Guang-li, Wang Tie-guan, Zhang Lin-ye. Hydrocarbon-generation characteristics for lacustrine carbonate source rocks in Bonan Sag of Jiyang Depression[J]. Acta Pet Sinica, 2007, 28(2): 62-68 (in Chinese with English abstract).
[11]Zhang S C, Huang H P, Su J, Liu M, Wang X M, Hu J. Geochemistry of Paleozoic marine petroleum from the Tarim Basin, NW China: Part 5. Effect of maturation, TSR and mixing on the occurrence and distribution of alkyldibenzothiophenes[J]. Org Geochem, 2015, 86: 5-18.
[12]Radke M. Application of aromatic compounds as maturity indicators in source rocks and crude oils[J]. Mar Petrol Geol, 1988, 5(3): 224-236.
[13]Peters K E, Walters C C, Moldowan J M. The Biomarker Guide[M]. 2nd ed. New York: Cambridge University Press, 2005: 135-168.
[14]Gao X B, Pang L L, Zhu S K, Zhang W F, Dai W, Li D H, Sheng H. Gas purge microsyringe extraction coupled to comprehensive two-dimensional gas chromatography for the characterization of petroleum migration[J]. Org Geochem, 2017, 106: 30-47.
[15]Wei Z, Walters C C, Moldowan J M, Mankiewicz P J, Pottorf R J, Xiao Y T, Maze W, Nguyen P T H, Madincea M E, Phan N T, Peters K E. Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J]. Org Geochem, 2012, 44(3): 53-70.
[16]Cai C F, Zhang C M, Cai L L, Wu G H, Jiang L, Xu Z M, Li K K, Ma A L, Chen L X. Origins of Palaeozoic oils in the Tarim Basin: Evidence from sulfur isotopes and biomarkers[J]. Chem Geol, 2009, 268(3): 197-210.
[17]Zhu G Y, Weng N, Wang H T, Yang H J, Zhang S C, Su J, Liao F R, Zhang B, Ji Y G. Origin of diamondoid and sulphur compounds in the Tazhong Ordovician condensate, Tarim Basin, China: Implications for hydrocarbon exploration in deep-buried strata[J]. Mar Pet Geol, 2015, 62: 14-27.
[18]马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 42-53.
Ma An-lai, Jin Zhi-jun, Zhu Cui-shan. Detection and research significance of thiadiamondoids from crude oil in Well Shunnan 1, Tarim Basin[J]. Acta Pet Sinica, 2018, 39(1): 42-53 (in Chinese with English abstract).
[19]Sinninghe Damsté J S, Leeuw J W D, Dalen K V, Zeeuw M A D, Lange F D, Rijpstra I C, Schenck P A. The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts. I. A study of Rozel Point Oil (USA) [J]. Geochim Cosmochim Acta, 1987, 51(9): 2369-2391.
[20]Sinninghe Damsté J S, Rijpstra W I C, Leeuw J W D, Schenck P A. The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts: II. Their presence in samples from hypersaline and non-hypersaline palaeoenvironments and possible application as source, palaeoenvironmental and maturity indicators[J]. Geochim Cosmochim Acta, 1989, 53(6): 1323-1341.
[21]Sinninghe Damsté J S, Leeuw J W D. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: State of the art and future research[J]. Org Geochem, 1990, 16(4/6): 1077-1101.
[22]Machel H G, Krouse H R, Sassen R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Appl Geochem, 1995, 10(4): 373-389.
[23]Pan Y H, Liao Y H, Shi Q. Variations of acidic compounds in crude oil during simulated aerobic biodegradation: Monitored by semiquantitative negative-ion ESI FT-ICR MS[J]. Energ Fuel, 2017, 31(2): 1126-1135.
[24]Borton D, Pinkston D S, Hurt M R, Tan X L, Azyat K, Scherer A, Tykwinski R, Gray M, Qian K N, Kenttamaa H I. Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry[J]. Energ Fuel, 2010, 24(10): 5548-5559.
[25]Han Y H, Zhang Y F, Xu C M, Hsu C S. Molecular characterization of sulfur-containing compounds in petroleum[J]. Fuel, 2018, 221: 144-158.
[26]杨丽华. 成品油硫含量设备(紫外荧光法)验收标准及使用建议[J]. 中国石油和化工标准与质量, 2017, 37(7): 5-6.
Yang Li-hua. Acceptance standard and application suggestion of sulfur content equipment (ultraviolet fluorescence method) for product oil[J]. China Petrol Chem Stand Qual, 2017, 37(7): 5-6.
[27]Chen X, Li H D, Zhang L Z, Shi Q, Zhao S Q, Xu C M. CYHPO oxidation followed by methylation for selective characterization of thiophenic and sulfidic compounds in petroleum via ESI FT-ICR MS [J]. Fuel, 2020, 265: 1-8.
[28]Niyonsaba E, Manheim J M, Yerabolu R, Kenttamaa H I. Recent advances in petroleum analysis by mass spectrometry[J]. Anal Chem, 2019, 91(1): 156-177.
[29]Sun X L, Tang Y. Ylide-initiated michael addition-cyclization reactions beyond cyclopropanes[J]. Acc Chem Res, 2008, 41(8): 937-948.
[30]Liu P, Shi Q, Chung K H, Zhang Y H, Pan N, Zhao S Q, Xu C M. Molecular characterization of sulfur compounds in Venezuela crude oil and its SARA fractions by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Energ Fuel, 2010, 24(9): 5089-5096.
[31]Müller H, Andersson J T. Characterization of high-molecular-weight sulfur-containing aromatics in vacuum residues using fourier transform ion cyclotron resonance mass spectrometry[J]. Anal Chem, 2005, 77(8): 2536-2543.
[32]Li H D, Chen X, Wu J X, Zhang Y H, Liu X X, Shi Q, Zhao S Q, Xu C X, Chang S H. Selective methylation of sulfides in petroleum for electrospray ionization mass spectrometry analysis[J]. Energ Fuel, 2019, 33(3): 1797-1802.
[33]Liu M, Wang M, Zhang L Z, Xu Z M, Chen Y L, Guo X Y, Zhao S Q. Transformation of sulfur compounds in the hydrotreatment of supercritical fluid extraction subfractions of Saudi Arabia atmospheric residua[J]. Energ Fuel, 2015, 29(2): 702-710.
[34]Wu J X, Zhang W L, Ma C, Wang F L, Zhou X, Chung K H, Hou D J, Zhang Y H, Shi Q. Isolation and characterization of sulfur compounds in a lacustrine crude oil[J]. Fuel, 2019, 253: 1482-1489.
[35]Wang P, Xu C M, Zhang Y H, Wang M, Shi Q. Identification of artifacts in the methylation process of sulfur compounds in petroleum[J]. Energ Fuel, 2018, 32(10): 10571-10579.
[36]Von E Doering W, Saunders M, Boyton H G, Earhart H W, Wadley E F, Edwards W R, Laber G. The 1, 1, 2, 3, 4, 5, 6-heptamethylbenzenonium ion[J]. Tetrahedron, 1958, 4(1/2): 178-185.
[37]Wang M, Zhao S Q, Liu X X, Shi Q. Molecular characterization of thiols in fossil fuelsby michael addition reaction derivatization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Anal Chem, 2016, 88(19): 9837-9842.
[38]Liu P, Xu C M, Shi Q, Pan N, Zhang Y H, Zhao S Q, Chung K H. Characterization of sulfide compounds in petroleum: Selective oxidation followed by positive-ion electrospray fourier transform ion cyclotron resonance mass spectrometry[J]. Anal Chem, 2010, 82(15): 6601-6606.
[39]Willey C, Iwao M, Castle R N, Lee M L. Determination of sulfur heterocycles in coal liquids and shale oils[J]. Anal Chem, 1981, 53(3): 400-407.
[40]Marvin C H, Li C L, Allan L M, McCarry B E. Isolation and characterization of sulfur-containing polycyclic aromatic compounds (thia-arenes) from complex environmental mixtures[J]. Int J Environ Anal Chem, 2000, 77(1): 15-28.
[41]Green T K, Whitley P, Wu K, Lloyd W G, Gan L Z. Structural characterization of sulfur compounds in petroleum by S-methylation and carbon-13 NMR spectroscopy[J]. Energ Fuel, 1994, 8(1): 814-814.
[42]Lu H, Shi Q, Ma Q, Shi Y, Liu J, Sheng G Y, Peng P A. Molecular characterization of sulfur compounds in some special sulfur-rich Chinese crude oils by FT-ICR MS[J]. Sci China Earth Sci, 2014, 57(6): 1158-1167.
[43]Hoyle C E, Lowe A B, Bowman C N. Thiol-click chemistry: A multifaceted toolbox for small molecule and polymer synthesis[J]. Chem Soc Rev, 2010, 39(4): 1355-1387.
[44]Janusson E, Bryce McGarvey G, Islam F, Rowan C, McIndoe J S. Selective mass spectrometric analysis of thiols using charge-tagged disulfides[J]. Analyst, 2016, 141: 5520-5526.
[45]Zhu G Y, Wang P, Wang M, Zhang Z Y, Shi Q. Occurrence and origins of thiols in deep strata crude oils, Tarim Basin, China[J]. Acs Earth Space Chem, 2019, 3(11): 2499-2509.
[46]Hebting Y, Schaeffer P, Behrens A, Adam P, Schmitt G, Schneckenburger P, Bernasconi S M, Albrecht P. Biomarker evidence for a major preservation pathway of sedimentary organic carbon[J]. Science, 2006, 312(5780): 1627-1631.
[47]Sundberg J, Feilberg K L. Characterization of heteroatom of heteroatom distribution in the polar fraction of North Sea oils using high-resolution mass spectrometry[J]. J Pet Sci Eng, 2020, 184: 1-8.
[48]Moustafa N E, Mahmoud K E F. A novel capped Pd nanoparticle GC-MS technique for the identification of Terpenoid sulfoxides in petroleum condensates[J]. Fuel Proc Technol, 2017, 156: 376-384.
[49]Breysse M, Djega-Mariadassou G, Pessayre S, Geantet C, Vrinat M, Pérot G, Lemaire M. Deep desulfurization: Reactions, catalysts and technological challenges[J]. Catal Today, 2003, 84(3/4): 129-138.
[50]Cho Y J, Na J G, Nho N S, Kim S H, Kim S. Application of saturates, aromatics, resins, and asphaltenes crude oil fractionation for detailed chemical characterization of heavy crude oils by fourier transform ion cyclotron resonance mass spectrometry equipped with atmospheric pressure photoionizati[J]. Energ Fuel, 2012, 26(5): 2558-2565.
[51]Hsu C S, Shi Q. Prospects for petroleum mass spectrometry and chromatography[J]. Sci China Chem, 2013, 56(7): 833-839.
[52]Lu H, Shi Q, Lu J, Sheng G Y, Peng P A, Hsu C S. Petroleum sulfur biomarkers analyzed by comprehensive two-dimensional gas chromatography sulfur-specific detection and mass spectrometry[J]. Energ Fuel, 2013, 27(12): 7245-7251.
[53]卢鸿, 王庆涛, 江林香, 张辉, 刘金钟, 盛国英, 彭平安. 晋县凹陷高硫重质稠油中含硫甾烷的检出及其形成机制探讨[J]. 中国科学: 地球科学, 2014, 44(5): 864-871.
Lu Hong, Wang Qingtao, Jiang Linxiang, Zhang Hui, Liu Jinzhong, Sheng Guoying, Peng Pingan. Identification and formation of sulfur-containing steroids in sulfur-rich heavy oils in the Jinxian Sag, Bohai Bay Basin, North China[J]. Sci China Earth Sci, 2014, 44(5): 864-871 (in Chinese).
[54]朱扬明, 傅家谟, 盛国英. 塔里木原油含硫化合物的地球化学意义[J]. 石油实验地质, 1998, 20(3): 253-257.
Zhu Yang-ming, Fu Jia-mo, Sheng Guo-ying. Geochemical significance of organic sulfur compounds in the Tarim oils[J]. Pet Geol Exp, 1998, 20(3): 253-257 (in Chinese with English abstract).
[55]宋一涛, 廖永胜, 王忠. 济阳坳陷盐湖沉积环境高硫稠油的特征及成因[J]. 石油学报, 2007, 28(6): 52-58.
Song Yi-tao, Liao Yong-sheng, Wang Zhong. Genesis and characteristics of sulfur-rich heavy oil in salt lake deposition environment of Jiyang Depression[J]. Acta Pet Sinica, 2007, 28(6): 52-58 (in Chinese with English abstract).
[56]刘琼, 何生. 江汉盆地西南缘原油中含硫化合物的分布特征及其地球化学意义[J]. 地质科技情报, 2008, 27(2): 59-65.
Liu Qiong, He Sheng. Distribution characteristics and geochemical significance of organic sulfur compounds from crude oils in the southwestern Jianghan Basin[J]. Geol Sci Technol Inf, 2008, 27(2): 59-65 (in Chinese with English abstract).
[57]Andersson J T, Schade T, Muller H. Separation of aromatic sulfur heterocycles from aromatic hydrocarbons by use of a palladium ion complex[J]. Fuel Chem Division Preprint, 2002, 47(2): 697-698.
[58]Sripada K, Andersson J T. Liquid chromatographic properties of aromatic sulfur heterocycles on a Pd(II)-containing stationary phase for petroleum analysis[J]. Anal Bioanal Chem, 2005, 382(3): 735-741.
[59]Hegazi A H, Andersson J T. Limitations to GC-MS determination of sulfur-containing polycyclic aromatic compounds in geochemical, petroleum, and environmental investigations[J]. Energ Fuel, 2007, 21(6): 3375-3384.
[60]Schade T, Andersson J T. Speciation of alkylated dibenzothiophenes in a deeply desulfurized diesel fuel[J]. Energ Fuel, 2006, 20(4): 1614-1620.
[61]Japes A, Penassa M, Andersson J T. Analysis of recalcitrant hexahydrodibenzothiophenes in petroleum products using a simple fractionation process[J]. Energ Fuel, 2009, 23(4): 2143-2148.
[62]Machado M E, Bregles L P, De Menezes E W, Caramao E B, Benvenutti E V, Zini C A. Comparison between pre-fractionation and fractionation process of heavy gas oil for determination of sulfur compounds using comprehensive two-dimensional gas chromatography[J]. J Chromatogr A, 2013, 1274: 165-172.
[63]Lobodin V V, Robbins W K, Lu J, Rodgers R P. Separation and characterization of reactive and non-reactive sulfur in petroleum and its fractions[J]. Energ Fuel, 2015, 29(10): 6177-6186.
[64]姜乃煌, 朱光有, 张水昌, 王政军. 塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义[J]. 科学通报, 2007, 52(24): 2871-2875.
Jiang Naihuang, Zhu Guangyou, Zhang Shuichang, Wang Zhengjun. 2-thioadamantane detected in crude oil of well Tazhong 83 in Tarim Basin and its geological significance[J]. Chinese Sci Bull, 2007, 52(24): 2871-2875 (in Chinese).
[65]Robson W J, Sutton P A, McCormack P, Chilcott N P, Rowland S J. Class type separation of the polar and apolar components of petroleum[J]. Anal Chem, 2017, 89(5): 2919-2927.
[66]Gao X B, Zhu S K, Zhang W F, Li D H, Dai W, He S. Analysis of crude oils using gas purge microsyringe extraction coupled to comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry[J]. Fuel, 2016, 182: 788-797.
[67]Wang J, Yang C, Li H J, Piao X F, Li D H. Gas purge-microsyringe extraction: A rapid and exhaustive direct microextraction technique of polycyclic aromatic hydrocarbons from plants[J]. Anal Chim Acta, 2013, 805: 45-53.
[68]Cheng X, Hou D J, Xu C G, Wang F L. Biodegradation of tricyclic terpanes in crude oils from the Bohai Bay Basin[J]. Org Geochem, 2016, 101: 11-21.
[69]Cheng X, Hou D J, Xu C G. The effect of biodegradation on adamantanes in reservoired crude oils from the Bohai Bay Basin, China[J]. Org Geochem, 2018, 123: 38-43.
[70]López García C, Becchi M, Grenier-Loustalot M F, Paisse O, Szymanski R. Analysis of aromatic sulfur compounds in gas oils using GC with sulfur chemiluminescence detection and high-resolution MS[J]. Anal Chem, 2002, 74(15): 3849-3857.
[71]Chiaberge S, Fiorani T, Cesti P. Methyldibenzothiophene isomer ratio in crude oils: Gas chromatography tandem mass spectrometry analysis[J]. Fuel Proc Technol, 2011, 92(11): 2196-2201.
[72]Xu H Y, George S C, Hou D J. The occurrence of isorenieratane and 24-n-propylcholestanes in Paleogene lacustrine source rocks from the Dongying Depression, Bohai Bay Basin: Implications for bacterial sulfate reduction, photic zone euxinia and seawater incursions[J]. Org Geochem, 2019, 127: 59-80.
[73]Cyr T D, Payzant J D, Montgomery D S, Strausz O P. A homologous series of novel hopane sulfides in petroleum[J]. Org Geochem, 1986, 9(3): 139-143.
[74]Ji H, Li S M, Paul G, Zhang H G, Pang X Q, Xu T W, He N N, Shi Q. Geochemical characteristics and significance of heteroatom compounds in lacustrine oils of the Dongpu Depression (Bohai Bay Basin, China) by negative-ion Fourier transform ion cyclotron resonance mass spectrometry[J]. Mar Pet Geol, 2018, 97: 568-591.
[75]Nytoft H P, Bojesen-Koefoed J A, Christiansen F G , Fowler M G. Oleanane or lupane? Reappraisal of the presence of oleanane in Cretaceous-Tertiary oils and sediments[J]. Org Geochem, 2002, 33(11): 1225-1240.
[76]Liang F Y, Lu M, Brich M E, Keener T C, Liu Z. Determination of polycyclic aromatic sulfur heterocycles in diesel particulate matter and diesel fuel by gas chromatography with atomic emission detection[J]. J Chromatogr A, 2006, 1114(1): 145-153.
[77]Beens J, Tijssen R. The characterization and quantitation of sulfur-containing compounds in (heavy) middle distillates by LC-GC-FID-SCD[J]. J Sep Sci, 1997, 20(3): 131-137.
[78]Yan X W. Sulfur and nitrogen chemiluminescence detection in gas chromatographic analysis[J]. J Chromatogr A, 2002, 976(1/2): 3-10.
[79]Hua R X, Wang J H, Kong H W, Liu J, Lu X, Xu G W. Analysis of sulfur-containing compounds in crude oils by comprehensive two-dimensional gas chromatography with sulfur chemiluminescence detection[J]. J Sep Sci, 2004, 27(9): 691-698.
[80]纪红. 盐湖相原油NSO化合物高分辨质谱特征及形成演化机质[D]. 北京: 中国石油大学, 2018.
Ji Hong. Molecular characterization of NSO compounds and their genetic and evolution mechanism in saline lacustrine oils revealed by ESI FT-ICR MS[D]. Beijing: China University of Petroleum, 2018 (in Chinese with English abstract).
[81]李素梅, 孟祥兵, 张宝收, 张海祖, 潘娜, 史权. 傅里叶变换离子回旋共振质谱的地球化学意义及其在油气勘探中的应用前景[J]. 现代地质, 2013, 27(1): 124-132 (in Chinese with English abstract).
Li Su-mei, Meng Xiang-bing, Zhang Bao-shou, Zhang Hai-zu, Pan Na, Shi Quan. Geochemical significance of FT-ICR MS and its application in petroleum exploration[J]. Geosci, 2013, 27(1): 124-132 (in Chinese with English abstract).
[82]Panda S K, Al-Hajji A A, Müller H, Koseoglu O R. Ligand exchange chromatography: A vital dimension for the reliable characterization of heterocycles in crude oils and refined products[J]. Anal Bioanal Chem, 2011, 400(5): 1231-1239.
[83]史权, 赵锁奇, 徐春明, 侯读杰. 傅立叶变换离子回旋共振质谱仪在石油组成分析中的应用[J]. 质谱学报, 2008, 29(6): 367-378.
Shi Quan, Zhao Suo-qi, Xu Chun-ming, Hou Du-jie. Fourier transform ion cyclotron resonance mass spectrometry and its application in petroleum analysis[J]. J Chinese Mass Spectr Soc, 2008, 29(6): 367-378 (in Chinese with English abstract).
[84]卢鸿, 史权, 马庆林, 时阳, 刘金钟, 盛国英, 彭平安. 傅里叶变换离子回旋共振质谱对中国高硫原油的分子组成表征[J]. 中国科学: 地球科学, 2014, 44(1): 122-131.
Lu Hong, Shi Quan, Ma Qinglin, Shi Yang, Liu Jinzhong, Sheng Guoying, Peng Pingan. Molecular characterization of sulfur compounds in some special sulfur-rich Chinese crude oils by FT-ICR MS[J]. Sci China Earth Sci, 2014, 44(1): 122-131 (in Chinese).
[85]Li S M, Pang X Q, Shi Q, Zhang B S, Zhang H Z, Pan N, Zhao M. Origin of the unusually high dibenzothiophene concentrations in Lower Ordovician oils from the Tazhong Uplift, Tarim Basin, China[J]. Pet Sci, 2011, 8(4): 382-391.
[86]Li S M, Shi Q, Pang X Q, Zhang B S, Zhang H Z. Origin of the unusually high dibenzothiophene Oils in Tazhong-4 oilfield of Tarim Basin and its implication in deep petroleum exploration[J]. Org Geochem, 2012, 48: 56-80.
[87]Liu W M, Liao Y H, Shi Q, Hsu C S, Jiang B, Peng P A. Origin of polar organic sulfur compounds in immature crude oils revealed by ESI FT-ICR MS[J]. Org Geochem, 2018, 121: 36-47.
[88]徐田武, 李素梅, 张洪安, 张云献, 吴建勋, 史权, 陈湘飞, 纪红, 万中华. 东濮凹陷原油含硫化合物的分布特征及其应用[J]. 现代地质, 2019, 33(3): 629-642.
Xu Tian-wu, Li Su-mei, Zhang Hong-an, Zhang Yun-xian, Wu Jian-xun, Shi Quan, Chen Xiang-fei, Ji Hong, Wan Zhong-hua. Characteristics and significance of organic sulfur compounds in the crude oils from the Dongpu Sag[J]. Geoscience, 2019, 33(3): 629-642 (in Chinese with English abstract).
[89]Liu Z Y, Phillips J B. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface[J]. J Chromatogr Sci, 1991, 29(6): 227-231.
[90]王汇彤, 张水昌, 翁娜, 李伟, 秦胜飞, 马文玲. 凝析油全二维气相色谱分析[J]. 石油勘探与开发, 2012, 39(1): 123-128.
Wang Hui-tong, Zhang Shui-chang, Weng Na, Li Wei, Qin Sheng-fei, Ma Wen-ling. Analysis of condensate oil by comprehensive two-dimensional gas chromatography[J]. Pet Explor Develop, 2012, 39(1): 123-128 (in Chinese with English abstract).
[91]马媛媛, 蒋启贵, 宋晓莹, 钱门辉, 刘鹏. 原油中的石油酸组分全二维气相色谱/飞行时间质谱分析[J]. 石油实验地质, 2016, 38(5): 685-691.
Ma Yuan-yuan, Jiang Qi-gui, Song Xiao-ying, Qian Men-hui, Liu Peng. Analysis of organic acids in crude oil by comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry[J]. Pet Geol Exp, 2016, 38(5): 685-691 (in Chinese with English abstract).
[92]王宗霜, 王乃鑫, 刘泽龙. 全二维气相色谱-高分辨飞行时间质谱分析LCO中芳烃化合物[J]. 石油学报, 2019, 35(2): 289-295.
Wang Zong-shuang, Wang Nai-xin, Liu Ze-long. Analysis of aromatics in light cycle oil by comprehensive two-dimensional gas chromatography coupled with high resolution time of flight mass spectrometry[J]. Acta Pet Sinica, 2019, 35(2): 289-295 (in Chinese with English abstract).
[93]王汇彤, 翁娜, 张水昌, 朱光有, 陈建平, 魏彩云. 全二维气相色谱/飞行时间质谱对原油芳烃分析的图谱识别[J]. 科学通报, 2010, 55(21): 71-77.
Wang Huitong, Weng Na, Zhang Shuichang, Zhu Guangyou, Chen Jianping, Wei Caiyun. Identification of petroleum aromatic fraction by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometer[J]. Chinese Sci Bull, 2010, 55(21): 71-77 (in Chinese).
[94]Armenta S, Alcala M, Blanco M. A review of recent, unconventional applications of ion mobility spectrometry (IMS)[J]. Anal Chim Acta, 2011, 703(2): 114-123.
[95]王海龙, 魏开华. 离子淌度质谱及其理论研究进展[J]. 军事医学科学院院刊, 2004, 28(6): 88-92.
Wang Hai-long, Wei Kai-hua. Ion mobility mass spectrometry and progress in its theory studies[J]. Bull Acad Milit Med Sci, 2004, 28(6): 88-92 (in Chinese with English abstract).
[96]王玉娜, 孟宪双, 刘丽娟, 白桦, 马强. 离子淌度质谱技术及其应用研究进展[J]. 分析测试学报, 2018, 37(10): 41-49.
Wang Yu-na, Meng Xian-shuang, Liu Li-juan, Bai Hua, Ma Qiang. Research progress on ion mobility spectrometry-mass spectrometry and its applications[J], J Instr Anal, 2018, 37(10): 41-49 (in Chinese with English abstract).
[97]Fernandez-Lima F A, Becker C, Mckenna A M, Rodgers R, Marshall A G, Russell D H. Petroleum crude oil characterization by IMS-MS and FTICR MS[J]. Anal Chem, 2009, 81(24): 9941-9947.
[98]Maire F, Neeson K, Denny R C, McCullagh M, Lange C, Afonso C, Giusti P. Identification of ion series using ion mobility mass spectrometry: The example of alkyl-benzothiophene and alkyl-dibenzothiophene ions in diesel fuels[J]. Anal Chem, 2013, 85(11): 5530-5534.
[99]Farenc M, Corilo Y E, Lalli P M, Lalli P M, Riches E, Rodgers R P, Afonso C, Giusti P. Comparison of atmospheric pressure ionization for the analysis of heavy petroleum fractions with ion mobility-mass spectrometry[J]. Energ Fuel, 2016, 30(11): 8896-8903.
[100]马士楠. 利用XANES对玛瑞混渣重质组分含硫官能团形态及转化行为研究[D]. 山东: 中国石油大学(华东), 2016: 1-72.
Ma Shi-nan. Study on forms and conversion behaviors of sulfur structures of MR-residue heavy components by XANES[D]. Shandong: China University of Petroleum (East China), 2016: 1-72 (in Chinese with English abstract).
[101]张龙力, 王春岚, 赵元生, 杨国华, 苏梅, 杨朝合. 石油沥青质含硫结构的XANES导数光谱研究[J]. 燃料化学学报, 2013, 41(11): 1328-1335.
Zhang Long-li, Wang Chun-lan, Zhao Yuan-sheng, Yang Guo-hua, Su Mei, Yang Chao-he. Speciation and quantification of sulfur compounds in petroleum asphaltenes by derivative XANES spectra[J]. J Fuel Chem Technol, 2013, 41(11): 1328-1335 (in Chinese with English abstract).
[102]Greenfield M L, Byrne M, Mitra-Kirtley S, Kercher E M, Bolin T B, Wu T P, Craddock P R, Bake K D, Pomerantz A E. XANES measurements of sulfur chemistry during asphalt oxidation[J]. Fuel, 2015, 162: 179-185.
[103]Pomerantz A E, Bake K D, Craddock P R, Kurzenhauser K W, Kodalen B G, Mitra-Kirtley S, Bolin T B. Sulfur speciation in kerogen and bitumen from gas and oil shales[J]. Org Geochem, 2014, 68: 5-12.
[104]George G N, Hackett M J, Sansone M, Gorbaty M L, Kelemen S R, Prince R C, Harris H H, Pickering I J. Long-range chemical sensitivity in the sulfur K-edge X-ray absorption spectra of substituted thiophenes[J]. J Phys Chem A, 2014, 118(36): 7796-7802.
[105]Schouten S, Graaf W D, Jaap S. Sinninghe Damsté J S, van Driel G B. Laboratory simulation of natural sulphurization: II. Reaction of multi-functionalized lipids with inorganic polysulphides at low temperatures[J]. Org Geochem, 1994, 22: 825-834.
[106]Liu P, Li M W, Jiang Q G, Cao T T Sun Y G. Effect of secondary oil migration distance on composition of acidic NSO compounds in crude oils determined by negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry[J]. Org Geochem, 2015, 78: 23-31.

备注/Memo

收稿日期(Received): 2020-02-12; 改回日期(Revised): 2020-03-25; 接受日期(Accepted): 2020-04-01
基金项目: 国家自然科学基金(41872131)
作者简介: 牛琮凯(1992-), 男, 博士研究生, 油气地球化学专业。E-mail: nck-lyx@outlook.com
* 通讯作者(Corresponding author): HOU Du-jie, E-mail: hdj@cugb.edu.cn; Tel: +86-10-82322278

更新日期/Last Update: 2021-10-20