PDF下载 分享
[1]郭柏,胡镕,魏广祎,等.东赤道太平洋高生产力和热液活动叠加沉积环境铁组分特征及其古海洋意义[J].地球化学,2022,51(预出版):1-15.[doi:10.19700/J.0379-1726.2021.06.011]
 GUO Bai,HU Rong,WEI Guangyi,et al.The characteristics of sedimentary Fe speciation under superimposed high productivity and hydrothermal activity in the eastern equatorial pacific and their paleoceanographic implications[J].Geochimica,2022,51(预出版):1-15.[doi:10.19700/J.0379-1726.2021.06.011]
点击复制

东赤道太平洋高生产力和热液活动叠加沉积环境铁组分特征及其古海洋意义

参考文献/References:

常鑫, 张明宇, 谷玉, 王厚杰, 刘喜停. 2021. 黄, 东海陆架泥质区自生黄铁矿成因及其控制因素. 地球科学进展, 35(12): 1306-1320.
张明亮, 郭伟, 沈俊, 刘凯, 周炼, 冯庆来, 雷勇. 2017. 古海洋氧化还原地球化学指标研究新进展. 地质科技情报, 36(4): 95-106.
Alexandrovich J M. 1989. Radiolarian biostratigraphy of ODP Leg 111, Site 677, eastern equatorial Pacific, late Miocene through Pleistocene // Becker K, Sakai H, Merrill R. Proceedings of the Ocean Drilling Program, Scientific Results. vol 111. College Station, TX: 245-262.
Alexandrovich J M. 1992. Stratigraphy and sedimentology of eastern equatorial Pacific ODP site 677: Late Miocene through Pleistocene. New York: Columbia University.
Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268(3-4): 211-225.
Aller R C, Hannides A, Heilbrun C, Panzeca C. 2004. Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments: The Gulf of Papua deltaic complex. Continental Shelf Research, 24(19): 2455-2486.
Anderson T F, Raiswell R. 2004. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. American Journal of Science, 304(3): 203-233.
Aquilina A, Homoky W B, Hawkes J A, Lyons T W, Mills R A. 2014. Hydrothermal sediments are a source of water column Fe and Mn in the Bransfield Strait, Antarctica. Geochimica et Cosmochimica Acta, 137: 64-80.
Behrenfeld M J, Bale A J, Kolber Z S, Aiken J, Falkowski P G. 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 383(6600): 508-511.
Bennett W W, Canfield D E. 2020. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments. Earth-Science Reviews, 204, 103175.
Berggren W A, Kent D V, Flynn J J, Van Couvering J A. 1985. Cenozoic geochronology. Geological Society of America Bulletin, 96(11): 1407-1418.
Berner R A. 1970. Sedimentary pyrite formation. American Journal of Science, 268(1): 1-23.
Berner R A. 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48(4): 605-615.
Canfield D E. 1989. Reactive iron in marine sediments. Geochimica et Cosmochimica Acta, 53(3): 619-632.
Canfield D E, Poulton S W, Narbonne G M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315(5808): 92-95.
Canfield D E, Raiswell R, Bottrell S H. 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292(9): 659-683.
Canfield D E, Raiswell R, Westrich J T, Reaves C M, Berner R A. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54(1-2): 149-155.
Cave R, German C, Thomson J. 2002. Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 66(11): 1905-1923.
Chappaz A, Lyons T W, Gregory D D, Reinhard C T, Gill B C, Li C, Large R R. 2014. Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochimica et Cosmochimica Acta, 126: 112-122.
Chavez F P, Barber R T. 1987. An estimate of new production in the equatorial Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 34(7): 1229-1243.
Chen D Z, Wang J G, Qing H R, Yan D T, Li R W. 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chemical Geology, 258(3-4): 168-181.
Dahl T W, Chappaz A, Hoek J, Mckenzie C J, Svane S, Canfield D E. 2017. Evidence of molybdenum association with particulate organic matter under sulfidic conditions. Geobiology, 15(2): 311-323.
Dahl T W, Ruhl M, Hammarlund E U, Canfield D E, Rosing M T, Bjerrum C J. 2013. Tracing euxinia by molybdenum concentrations in sediments using handheld X-ray fluorescence spectroscopy (HHXRF). Chemical Geology, 360-361: 241-251.
Etourneau J, Robinson R S, Martinez P, Schneider R. 2013. Equatorial Pacific peak in biological production regulated by nutrient and upwelling during the late Pliocene/early Pleistocene cooling. Biogeosciences, 10(8): 5663-5670.
Fitzsimmons J N, John S G, Marsay C M, Hoffman C L, Nicholas S L, Toner B M, German C R, Sherrell R M. 2017. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nature Geoscience, 10(3): 195-201.
Francisco P C M, Mitsui S, Ishidera T, Tachi Y, Doi R, Shiwaku H. 2020. Interaction of FeⅡ and Si under anoxic and reducing conditions: Structural characteristics of ferrous silicate co-precipitates. Geochimica et Cosmochimica Acta, 270: 1-20.
Gledhill M, Buck K N. 2012. The organic complexation of iron in the marine environment: A review. Frontiers in Microbiology, 3, 69. doi: 10.3389/fmicb.2012.00069
Goldberg T, Archer C, Vance D, Thamdrup B, Mcanena A, Poulton S W. 2012. Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden. Chemical Geology, 296: 73-82.
Hardisty D S, Lyons T W, Riedinger N, Isson T T, Owens J D, Aller R C, Rye D M, Planavsky N J, Reinhard C T, Gill B C. 2018. An evaluation of sedimentary molybdenum and iron as proxies for pore fluid paleoredox conditions. American Journal of Science, 318(5): 527-556.
Helz G R, Bura-Nakic E, Mikac N, Ciglenecki I. 2011. New model for molybdenum behavior in euxinic waters. Chemical Geology, 284(3-4): 323-332.
Henkel S, Kasten S, Poulton S W, Staubwasser M. 2016. Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments. Chemical Geology, 421: 93-102.
Jiang S Y, Yang J H, Ling H F, Chen Y Q, Feng H Z, Zhao K D, Ni P. 2007. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 217-228.
Johnston D T, Poulton S W, Goldberg T, Sergeev V N, Podkovyrov V, Vorob’eva N G, Bekker A, Knoll A H. 2012. Late Ediacaran redox stability and metazoan evolution. Earth and Planetary Science Letters, 335: 25-35.
Kon Y, Hirata T. 2015. Determination of 10 major and 34 trace elements in 34 GSJ geochemical reference samples using femtosecond laser ablation ICP-MS. Geochemical Journal, 49(4): 351-375.
Koschinsky A, Hein J R. 2003. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation. Marine Geology, 198(3-4): 331-351.
Lanseth M G. 1988. The distribution of geothermal and geochemical gradients near Site 501/504: Implications for hydrothermal circulation in the oceanic crust //Mottl M J, Hobart M A and Fisher A. Proceedings of the Ocean Drilling Program Initial Reports, 111 (Abstract Volume). College Station, Texas: Ocean Drilling Program: 23-32.
Li C, Love G D, Lyons T W, Fike D A, Sessions A L, Chu X. 2010. A stratified redox model for the Ediacaran ocean. Science, 328(5974): 80-83.
Li C, Yang S Y, Lian E G, Wang Q, Fan D D, Huang X T. 2017. Chemical speciation of iron in sediments from the Changjiang Estuary and East China Sea: Iron cycle and paleoenvironmental implications. Quaternary International, 452: 116-128.
Lin S, Huang K M, Chen S K. 2000. Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments. Continental Shelf Research, 20(4-5): 619-635.
Liu X W, Millero F J. 2002. The solubility of iron in seawater. Marine Chemistry, 77(1): 43-54.
Maerz C, Poulton S W, Brumsack H J, Wagner T. 2012. Climate-controlled variability of iron deposition in the Central Arctic Ocean (southern Mendeleev Ridge) over the last 130, 000 years. Chemical Geology, 330: 116-126.
Mclennan S M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2001, 2, 2000GC000109.
Michalopoulos P, Aller R C. 1995. Rapid clay mineral formation in Amazon delta sediments: Reverse weathering and oceanic elemental cycles. Science, 270(5236): 614-617.
Mix A C, Pisias N G, Rugh W, Wilson J, Morey A, Hagelberg T. 1995. Benthic foraminifer stable isotope record from Site 849 (0-5 Ma): Local and global climate changes // Pisias N G, Mayer L A, Janecek T R, Palmer-Julson A, van Andel T H. Proceedings of the Ocean Drilling Program, Scientific Results. vol 138. College Station, TX: 371-412.
Mottl M J. 1989. Hydrothermal convection, reaction, and diffusion in sediments on the Costa Rica Rift flank: Pore-water evidence from ODP Sites 677 and 678 // Becker K, Sakai H. Proceedings of the Ocean Drilling Program Scientific Results, 111 (Abstract Volume). College Station, Texas: Ocean Drilling Program: 195-213.
Peketi A, Mazumdar A, Joao H M, Patil D J, Usapkar A, Dewangan P. 2015. Coupled C-S-Fe geochemistry in a rapidly accumulating marine sedimentary system: Diagenetic and depositional implications. Geochemistry, Geophysics, Geosystems, 16(9): 2865-2883.
Planavsky N J, Mcgoldrick P, Scott C T, Li C, Reinhard C T, Kelly A E, Chu X L, Bekker A, Love G D, Lyons T W. 2011. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature, 477(7365): 448-451.
Poulton S W, Canfield D E. 2005. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chemical Geology, 214(3-4): 209-221.
Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements, 7(2): 107-112.
Poulton S W, Fralick P W, Canfield D E. 2004. The transition to a sulphidic ocean similar to 1.84 billion years ago. Nature, 431(7005): 173-177.
Poulton S W, Raiswell R. 2005. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chemical Geology, 218(3-4): 203-221.
Raiswell R, Buckley F, Berner R A, Anderson T. 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. Journal of Sedimentary Research, 58(5): 812-819.
Raiswell R, Canfield D E. 1998. Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298(3): 219-245.
Raiswell R, Canfield D E. 2012. The iron biogeochemical cycle past and present. Geochemical Perspectives, 1(1): 1-2.
Raiswell R, Canfield D, Berner R. 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology, 111(1-4): 101-110.
Raiswell R, Hardisty D S, Lyons T W, Canfield D E, Owens J D, Planavsky N J, Poulton S W, Reinhard C T. 2018. The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. American Journal of Science, 318(5): 491-526.
Resing J A, Sedwick P N, German C R, Jenkins W J, Moffett J W, Sohst B M, Tagliabue A. 2015. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature, 523(7559): 200-203.
Riedinger N, Brunner B, Krastel S, Arnold G L, Wehrmann L M, Formolo M J, Beck A, Bates S M, Henkel S, Kasten S, Lyons T W. 2017. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The argentine continental margin. Frontiers in Earth Science, 5, 33. doi: 10.3389/feart.2017.00033
Roshan S, Devries T, Wu J F, John S, Weber T. 2020. Reversible scavenging traps hydrothermal iron in the deep ocean. Earth and Planetary Science Letters, 542, 116297.
Rudnicki M, Elderfield H. 1993. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 57(13): 2939-2957.
Sarmiento J L, Gruber N. 2006. Ocean Biogeochemical Dynamics. Princeton University Press.
Scholz F. 2018. Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies. Earth-Science Reviews, 184: 29-45.
Scholz F, Mcmanus J, Mix A C, Hensen C, Schneider R R. 2014. The impact of ocean deoxygenation on iron release from continental margin sediments. Nature Geoscience, 7(6): 433-437.
Scholz F, Schmidt M, Hensen C, Eroglu S, Geilert S, Gutjahr M, Liebetrau V. 2019. Shelf-to-basin iron shuttle in the Guaymas Basin, Gulf of California. Geochimica et Cosmochimica Acta, 261: 76-92.
Scholz F, Severmann S, Mcmanus J, Hensen C. 2014. Beyond the Black Sea paradigm: The sedimentary fingerprint of an open-marine iron shuttle. Geochimica et Cosmochimica Acta, 127: 368-380.
Scholz F, Severmann S, Mcmanus J, Noffke A, Lomnitz U, Hensen C. 2014. On the isotope composition of reactive iron in marine sediments: Redox shuttle versus early diagenesis. Chemical Geology, 389: 48-59.
Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324: 19-27.
Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452(7186): 456-459.
Sperling E A, Wolock C J, Morgan A S, Gill B C, Kunzmann M, Halverson G P, Macdonald F A, Knoll A H, Johnston D T. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523(7561): 451-454.
Statham P, German C, Connelly D. 2005. Iron (Ⅱ) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean. Earth and Planetary Science Letters, 236(3-4): 588-596.
Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32.
Wagner M, Chappaz A, Lyons T W. 2017. Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS. Geochimica et Cosmochimica Acta, 206: 18-29.
Wehrmann L M, Formolo M J, Owens J D, Raiswell R, Ferdelman T G, Riedinger N, Lyons T W. 2014. Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): Evidence for a benthic recycling-transport mechanism. Geochimica et Cosmochimica Acta, 141: 628-655.
Winckler G, Anderson R F, Jaccard S L, Marcantonio F. 2016. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years. Proceedings of the National Academy of Sciences of the United States of America, 113(22): 6119-6124.
Zhu M X, Hao X C, Shi X N, Yang G P, Li T. 2012. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf. Applied Geochemistry, 27(4): 892-905.
Zhu M X, Huang X L, Yang G P, Chen L J. 2015. Iron geochemistry in surface sediments of a temperate semi-enclosed bay, North China. Estuarine Coastal and Shelf Science, 165: 25-35.

备注/Memo

收稿日期: 2021-03-30; 改回日期: 2021-05-14
项目资助: 国家自然科学基金项目(41807435)资助。
第一作者简介: 郭柏(1996-), 男, 硕士研究生, 地球化学专业。E-mail: guobai1996@163.com
通信作者: 陈天宇(1986-), 男, 教授, 主要从事深海地球化学和古海洋研究。E-mail: tianyuchen@nju.edu.cn

更新日期/Last Update: 2022-01-13